精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.
(1)求∠B的度数.
(2)如果AC=3cm,求AB的长度.
(3)猜想:ED与AB的位置关系,并证明你的猜想.

【答案】
(1)解:∵AE是△ABC的角平分线,

∴∠CAE=∠EAB,

∵∠CAE=∠B,

∴∠CAE=∠EAB=∠B.

∵在△ABC中,∠C=90°,

∴∠CAE+∠EAB+∠B=3∠B=90°,

∴∠B=30°


(2)解:∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,

∴AB=2AC=6cm


(3)解:猜想:ED⊥AB.理由如下:

∵∠EAB=∠B,

∴EB=EA,

∵ED平分∠AEB,

∴ED⊥AB


【解析】(1)先由角平分线的定义及已知条件得出∠CAE=∠EAB=∠B,再根据直角三角形两锐角互余得出∠CAE+∠EAB+∠B=3∠B=90°,那么∠B=30°;(2)根据30°角所对的直角边等于斜边的一半得出AB=2AC=6cm;(3)先由∠EAB=∠B,根据等角对等边得出EB=EA,又ED平分∠AEB,根据等腰三角形三线合一的性质得到ED⊥AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一条城际铁路从A市到B市需要经过C市,A市位于C市西南方向,与C市相距40在千米,B市恰好位于A市的正东方向和C市的南偏东60°方向处.因打造城市经济新格局需要,将从A市到B市之间铺设一条笔直的铁路,求新铺设的铁路AB的长度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣(x﹣2)2+3的顶点坐标是(
A.(﹣2,3)
B.(2,3)
C.(2,﹣3)
D.(﹣2,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速驶向港口P.乙船从港口P出发,沿南偏东45°方向匀速驶离港口PC=2x,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是一条( )

A. 射线 B. 直线 C. 线段 D. 以上都是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.

解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)
(同角的补角相等)①
(内错角相等,两直线平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
(等量代换)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,AC=BD,ACBD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是(   )

A. 选①② B. 选选①③ C. 选②③ D. 选②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.
(1)求证:PA平分∠BAC的外角∠CAM;
(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.

查看答案和解析>>

同步练习册答案