精英家教网 > 初中数学 > 题目详情

【题目】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.

解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)
(同角的补角相等)①
(内错角相等,两直线平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
(等量代换)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦

【答案】∠EFD=∠2;AB∥EF;两直线平行,内错角相等;已知;∠ADE=∠B;同位角相等,两直线平行;两直线平行,同位角相等
【解析】∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知 )

∴∠EFD=∠2(同角的补角相等)①

∴AB∥EF(内错角相等,两直线平行)②

∴∠ADE=∠3(两直线平行,内错角相等)③

∵∠3=∠B(已知)④

∴∠ADE=∠B(等量代换)⑤

∴DE∥BC(同位角相等,两直线平行)⑥

∴∠AED=∠C(两直线平行,同位角相等)⑦.

答案为:∠EFD=∠2;AB∥EF;两直线平行,内错角相等;
∠ADE=∠B,同位角相等,两直线平;
两直线平行,同位角相等.

【考点精析】关于本题考查的余角和补角的特征和平行线的判定与性质,需要了解互余、互补是指两个角的数量关系,与两个角的位置无关;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知锐角ABC中,边BC长为12,高AD长为8.

(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.

的值;

设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;

(2)若AB=AC,正方形PQMN的两个顶点在ABC一边上,另两个顶点分别在ABC的另两边上,直接写出正方形PQMN的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,则△BDE的周长等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.
(1)求∠B的度数.
(2)如果AC=3cm,求AB的长度.
(3)猜想:ED与AB的位置关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是(

A.4 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的个数有( )
①﹣0.5x2y3与5y2x3是同类项;
②2π与﹣4不是同类项;
③两个单项式的和一定是多项式;
④单项式mn3的系数与次数之和为4.
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于点O.
(1)求证:OB=OC.
(2)若∠ABC=65°,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“种瓜得瓜,种豆得豆”这一事件是 必然事件”“不可能事件”“随机事件).

查看答案和解析>>

同步练习册答案