【题目】如图,在直角坐标系中,△ABC满足∠BCA=90°,AC=BC=,点A、C分别在x轴和y轴上,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.
(1)当AB∥y轴时,求B点坐标.
(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.
(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是4?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.
【答案】(1)点B坐标为(,)(2)点A(2,0);(3)存在点D,点D坐标为(0,﹣1)或(0,2).
【解析】
(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;
(2)根据全等三角形的判定与性质,可得BE=OC=x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;
(3)分类讨论:①D在y轴的正半轴上;②D在y轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.
(1)∵∠BCA=90°,AC=BC=,
∴∠BAC=45°,AB==
∵AB∥y轴,
∴∠BAO=90°=∠COA
∴∠CAO=45°=∠OCA
∴CO=AO
∵AO2+CO2=AC2,
∴2AO2=5
∴AO=
∴点B坐标为(,)
(2)如图,过点B,作BE⊥y轴,垂足为点E,
∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°
∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC
∴△AOC≌△CEB(AAS)
∴BE=CO,AO=CE
∵点B落在直线y=3x上
∴设B(x,3x)
∴BE=x=OC,OE=3x,
∴CE=OA=2x,
∵OA2+OC2=AC2
∴(2x)2+x2=5
∴x=1
∴OA=2x=2
∴点A(2,0)
(3)设点D(0,y)
当点D在y轴正半轴上,如图,连接OB,
∵S四边形ABDO=S△AOB+S△BDO=4
∴×y×1+×2×3=4
∴y=2
∴点D(0,2)
若点D在y轴负半轴上,如图,连接OB,
∵S四边形ABDO=S△AOB+S△ADO=4
∴×2×3+×2×(﹣y)=4
∴y=﹣1
∴点D坐标为(0,﹣1).
∴存在点D,点D坐标为(0,2)或(0,﹣1).
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请根据图中提供的信息,回答下列问题
(1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=,其中d(km)是雷雨区域的直径.
(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?
(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正确的是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在解不等式|x+1|>2时,我们可以采用下面的解答方法:
①当x+1≥0时,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式组
∴解得不等式组的解集为x>1.
②当x+1<0时,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式组
∴解得不等式组的解集为x<﹣3.
综上所述,原不等式的解集为x>1或x<﹣3.
请你仿照上述方法,尝试解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区的手机收费如下两种方式(接听均免费),用户可任选其一:
A:月租费0元,拨打电话计费0.15元/分
B:月租费15元,拨打电话计费0.1元/分
(1)某用户某月打手机100分钟,请计算两种方式各缴费多少元?
(2)某用户某月打手机x分钟,请你写出两种方式下该用户应缴付的费用?
(3)若某用户估计一个月内打手机15小时,你认为哪种方式更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com