【题目】如图,AB、CD 分别为两圆的弦,AC、BD 为两圆的公切线且相交于点 P.若 PC=2,DB=6,∠APB=90°.
(1)求△PAB 的周长.
(2)求△PAB 与△PCD 的面积之比.
【答案】(1)8+4;(2)△PAB 与△PCD 的面积之比是 4:1.
【解析】
(1)由切线长定理可求得PA=PB,PC=PD;根据PC、DB的长,即可求出PA、PB的长;再根据∠APB=90°,可求出AB的长,由此可求出△PAB的周长;
(2)根据题意可知△APB 和△DPC 都是直角三角形,再分别求出△PAB 与△PCD 的面积计算比值即可.
(1)依题意得:∵AB、BD 为两圆的公切线,
∴PC=PD,PA=PB,
又∵PC=2,DB=6 且 DB=PD+PB,
∴PB=PA=4,
又∵∠APB=90°,
∴△APB 是直角三角形,
∴AB=4 ,
∴△PAB 的周长=8+4;
(2)∵∠APB 与∠DPC 是对顶角,且∠APB=90°
∴△APB 和△DPC 都是直角三角形,
∴△PAB 的面积为:=8,△PCD 的面积为=2,
∴△PAB 与△PCD 的面积之比是 4:1.
科目:初中数学 来源: 题型:
【题目】如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.
(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;
(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A、B、C都是格点每个小方格的顶点叫格点,其中,,.
外接圆的圆心坐标是______;
外接圆的半径是______;
已知与点D、E、F都是格点成位似图形,则位似中心M的坐标是______;
请在网格图中的空白处画一个格点,使∽,且相似比为:1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,菱形ABCD的边长为6,∠DAB=60°,点E是AB的中点,连接AC、EC.点Q从点A出发,沿折线A﹣D﹣C运动,同时点P从点A出发,沿射线AB运动,P、Q的速度均为每秒1个单位长度;以PQ为边在PQ的左侧作等边△PQF,△PQF与△AEC重叠部分的面积为S,当点Q运动到点C时P、Q同时停止运动,设运动的时间为t.
(1)当等边△PQF的边PQ恰好经过点D时,求运动时间t的值;当等边△PQF的边QF 恰好经过点E时,求运动时间t的值;
(2)在整个运动过程中,请求出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)如图2,当点Q到达C点时,将等边△PQF绕点P旋转α°(0<α<360),直线PF分别与直线AC、直线CD交于点M、N.是否存在这样的α,使△CMN为等腰三角形?若存在,请直接写出此时线段CM的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列 材料,并解答总题:
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母x+1,可设
则
=
∵对于任意上述等式成立
∴,
解得,
∴
这样,分式就拆分成一个整式与一个分式的和的形式.
(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为___________;
(2)已知整数使分式的值为整数,则满足条件的整数=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ACD中,AD=9,CD=3,△ABC中,AB=AC.
(1)如图1,若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′
①求证:BD=CD′;
②求BD的长.
(2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),
B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线经过点A(0,3),B(3,0),C(4,3).
(1)求抛物线的函数表达式;
(2)求抛物线的顶点坐标和对称轴;
(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com