精英家教网 > 初中数学 > 题目详情

【题目】如图,D是等边ABCAB边上的一动点(不与端点AB重合),以CD为一边向上作等边EDC,连接AE

1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;

2D点在运动过程中,直线AEBC始终保持怎样的位置关系?并说明理由.

【答案】1)△BDC≌△AEC,理由见解析;(2AE//BC,理由见解析

【解析】

1)根据等边三角形的性质可得∠BCA=DCE=60°BC=ACDC=EC,然后根据等式的基本性质可得∠BCD=ACE,再利用SAS即可证出结论;

2)根据全等三角形的性质和等边三角形的性质可得∠DBC=EAC=60°,∠ACB=60°,然后利用平行线的判定即可得出结论.

1)△BDC≌△AEC

理由如下:∵△ABC和△EDC都是等边三角形,

∴∠BCA=DCE=60°BC=ACDC=EC

∴∠BCA-∠ACD=DCE-∠ACD

∴∠BCD=ACE

在△BDC和△AEC

∴△BDC≌△AEC

2AE//BC

理由如下:∵△BDC≌△AEC,△ABC是等边三角形

∴∠DBC=EAC=60°,∠ACB=60°

∴∠EAC=ACB

AE//BC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形 OABC 在图 1 中的直角坐标系中,且OCy 轴上,OA∥BC,A、B两点的坐标分别为 A(18,0),B(12,8),动点 P、Q分别从 O、B两点出发,点 P以每秒2个单位的速度沿 OA 向终点 A 运动,点 Q 以每秒1个单位的速度沿BCC运动,当点 P停止运动时,点 Q 同时停止运动.动点 P、Q 运动时间为 t(单位:秒).

(1)t 为何值时,四边形 PABQ 是平行四边形,请写出推理过程;

(2)如图 2,线段 OB、PQ 相交于点 D,过点 D DE∥OA,交 AB 于点 E,射线 QE x 轴于点 F,PF=AO.当 t 为何值时,△PQF 是等腰三角形?请写出推理过程;

(3)如图 3,过 B BG⊥OA 于点 G,过点 A AT⊥x 轴于点 A,延长 CB AT于点 T.将点 G 折叠,折痕交边 AG、BG 于点 M、N,使得点 G 折叠后落在AT 边上的点为 G′,求 AG′的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015山东省德州市,2412分)已知抛物线y=-mx2+4x+2mx轴交于点Aα0), Bβ0),且

1)求抛物线的解析式.

2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E.是否存在x轴上的点My轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.

3)若点P在抛物线上,点Qx轴上,当以点DEPQ为顶点的四边形是平行四边形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示OABA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.

1)出发时,乙在甲前面多少米处?

2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图以正方形ABCDB点为坐标原点.BC所在直线为x轴,BA所在直线为y轴,建立直角坐标系.设正方形ABCD的边长为6,顺次连接OAOBOCOD的中点A1B1C1D1,得到正方形A1B1C1D1,再顺次连接OA1OB1OC1OD1的中点得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n为不小于1的自然数),设An点的坐标为(xnyn),则xn+yn=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在线段BD上,在BD的同侧作等腰和等腰,其中,CDBE、AE分别交于点P、对于下列结论:

其中正确的是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD 分别为两圆的弦,AC、BD 为两圆的公切线且相交于点 P.若 PC=2,DB=6,∠APB=90°.

(1)PAB 的周长.

(2)PAB PCD 的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点的坐标为(1),下列结论:①c0;②b24ac0;③a+b=0;④4acb24a,其中错误的是(

A. B. C. D.

查看答案和解析>>

同步练习册答案