精英家教网 > 初中数学 > 题目详情

【题目】如图,直线轴,轴分别交于点,经过点的抛物线轴的另一个交点为点,点是抛物线上一点,过点轴于点,连接,设点的横坐标为.

求抛物线的解析式;

当点在第三象限,设的面积为,求的函数关系式,并求出的最大值及此时点的坐标;

连接,若,请直接写出此时点的坐标.

【答案】1;(2)当时,存在最大值,最大值为,此时点D的坐标为 3)点的坐标为.

【解析】

1)先利用一次函数求出点A的坐标,再用待定系数法即可求出抛物线的解析式;

2)先用含m的式子表示出点D的坐标及DF的长,进而求出的函数关系式,根据顶点式即可得出答案;

3)由题可知 OBC EAD相似,根据根据的性质即可得出答案.

解:(1)在中,令,得

的坐标为

将点,代入中,得,

解得

抛物线的解析式为

2)如图,设交直线于点

的横坐标为

则点的坐标为

抛物线开口向下,

时,存在最大值,最大值为

时,

此时点的坐标为

3)点的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以AB为直径的⊙OAC于点M,弦MNBCAB于点E,且ME1AM2AE

1)求证:BC是⊙O的切线;

2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数yax2+bx+2的图象与x轴交于A(﹣30),B10)两点,与y轴交于点C

1)求这个二次函数的关系解析式;

2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;

3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BABC4,∠A30°,DAC上一动点,

(Ⅰ)AC的长=_____

(Ⅱ)BD+DC的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有四张质地均匀,大小完全相同的卡片,在其正面分别标有数字﹣1,﹣2,2,3,把卡片背面朝上洗匀,从中随机抽出一张后,不放回,再从中随机抽出一张,则两次抽出的卡片所标数字之和为正数的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种水果进价为每千克15元,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克.设销售单价为(元),每天的销售量为(千克),每天获利为(元).

1)求之间的函数关系式;

2)求之间的函数关系式;该水果定价为每千克多少元时,每天的销售利润最大?最大利润是多少元?

3)如果商家规定这种水果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于二象限内的A点和四象限内的B点,与x轴将于点C,连接AO,已知AO2tanAOC,点B的坐标为(a,﹣4).

1)求此反比例函数和一次函数的解析式;

2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;

3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBC,∠ABC=90°,AB=3AD=4BC=,动点PA点出发,按ABC的方向在ABBC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AOBOCO,并取它们的中点DEF,得DEF,则下列说法正确的个数是(  )

ABCDEF是位似图形ABCDEF是相似图形

ABCDEF的周长比为12ABCDEF的面积比为41

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案