精英家教网 > 初中数学 > 题目详情

【题目】如图是一个用硬纸板制作的长方体包装盒展开图已知它的底面形状是正方形高为12cm

(1)制作这样的包装盒需要多少平方厘米的硬纸板?

(2)1平方米硬纸板价格为5则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)

【答案】(1)360;(2)1.8

【解析】

(1)根据图形得到底面正方形边长然后根据表面积=2个底面面积+4个侧面面积计算即可

(2)先算出10个包装盒的面积再乘以单价即可注意单位要统一

(1)由图形可知底面正方形的边长=18-12=6.包装盒的表面积=6×6×2+4×6×12=72+288=360(平方厘米).

制作一个这样的包装盒需要360平方厘米的硬纸板

(2)10×360÷10000×5=1.8(元)

制作10个这的包装盒需花1.8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OA平分EOC

(1)若EOC=70°,求BOD的度数;

(2)若EOCEOD=2:3,求BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,测量一建筑物CD的高度,他们站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走20m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知观测员的眼睛与地面距离为1.5m(即AB=1.5m),求这栋建筑物CD的高度.(参考数据: ≈1.732, ≈1.414.结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠ACB=30°,其直角边分别与坐标轴垂直,已知顶点的坐标为A(,0),C(0,1).

(1)如果A关于BC对称的点是D,则点D的坐标为   

(2)过点B作直线m∥AC,交CD连线于E,求△BCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点AOB在一条直线上,将射线OCO点顺时针方向旋转90°后,得到射线OD,在旋转过程中,射线OC始终在直线AB上方,且OE平分∠AOD.约定,无论∠AOD大小如何,OE都看作是由OAOD两边形成的最小角的平分线.

(1)如图,当∠AOC=30°时,∠BOD=_________°;

(2)若射线OF平分∠BOC,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB=(为常数),点C为直线AB上一点,点PQ分别在线段BCAC上,且满足CQ=2AQCP=2BP.

(1)如图,当点C恰好在线段AB中点时,则PQ=_______(用含的代数式表示);

(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;

(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ-2PQ1的大小关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)(
A.16
B.24﹣4π
C.32﹣4π
D.32﹣8π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径总长度为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案