精英家教网 > 初中数学 > 题目详情

【题目】如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点ABC(顶点是网格线的交点)和点A1

1)将ABC绕点A顺时针旋转90°,画出相应的AB1C1

2)将AB1C1沿射线AA1平移到A1B2C2处,画出A1B2C2

3)点C在两次变换过程中所经过的路径长为   

【答案】(1)见解析;(2)见解析;(3)

【解析】

1)根据旋转三要素找到各点的对应点,顺次连接即可;

2)根据平移前后对应点连线平行且相等,找到B2C2的位置,顺次连接即可.

3)点C经过的路径是一段弧长和一条线段的长度之和.

1)如图所示:(2)所画图形如下:

3)∵AC==

C1C2=

C在两次变换过程中所经过的路径长=+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边 ABx轴上,直角顶点Cy轴正半轴上,已知点A(-10).

1)请直接写出点BC的坐标:B )、C );并求经过ABC三点的抛物

线解析式;

2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段

AB上(点E是不与AB两点重合的动点),并使ED所在直线经过点C 此时,EF所在直线与(1)中的抛物线交于第一象限的点M

①设AE=x,当x为何值时,OCE∽△OBC

②在①的条件下探究:抛物线的对称轴上是否存在点P使PEM是等腰三角形,若存在,请求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1DEABC的边BC上,若ADE是等边三角形则称ABC可内嵌,ADE叫做ABC的内嵌三角形.

1)直角三角形______可内嵌.(填写一定一定不不一定

2)如图2,在ABC中,∠BAC=120°ADEABC的内嵌三角形,试说明AB2=BDBC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.

3)在(2)的条件下,如果AB=1AC=2,求ABC的内嵌ADE的边长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.

抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中 事件,小悦被抽中 事件(不可能必然随机”);第一次抽取卡片小悦被抽中的概率为

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5.

(1)2015年学校寝室数为64,2017年建成后寝室数为121,20152017年的平均增长率;

(2)若建成后的寝室可供600人住宿,求单人间的数量;

(3)若该校今年建造三类不同的寝室的总数为180,则该校的寝室建成后最多可供多少师生住宿?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边CDRtEFG的直角边EF重合,将正方形ABCD1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点CAE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cmEF=4cm,设正方形移动时间为xs),线段EH的长为ycm),其中0≤x≤2.5

1)当x=2时,AE的长为

2)试求出y关于x的函数关系式,并求出EHDADE的面积之差;

3)当正方形ABCD移动时间x= 时,线段HD所在直线经过点B

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个三角形纸片ABC,面积为25BC的长为10,∠B、∠C都为锐角,MAB边上的一动点(MAB不重合),过点MMNBCAC于点N,设MN=x
1)用x表示△AMN的面积;
2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AMAN落在四边形BCNM所在的平面内),设点A落在平面BCNM内的点A′,△AMN与四边形BCNM重叠部分的面积为y
①用含x的代数式表示y,并写出x的取值范围.
②当x为何值时,重叠部分的面积y最大,最大为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司设计了一款产品,每件成本是50元,在试销期间,据市场调查,销售单价是60元时,每天的销量是250件,而销售单价每增加1元,每天会少售出5件,公司决定销售单价x(元)不低于60元,而市场要求x不得超过100元.

1)求出每天的销售量y(件)与销售单价x(元)之间的函数关系式,并写出x的取值范围;

2)求出每天的销售利润W(元)与销售单价x(元)之间的函数关系式,并求出当x为多少时,每天的销售利润最大,并求出最大值;

3)若该公司要求每天的销售利润不低于4000元,但每天的总成本不超过6250元,则销售单价x最低可定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠B=∠C30°,点OBC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.

试说明AC与⊙O相切;

,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案