【题目】定义:如图1,D,E在△ABC的边BC上,若△ADE是等边三角形则称△ABC可内嵌,△ADE叫做△ABC的内嵌三角形.
(1)直角三角形______可内嵌.(填写“一定”、“一定不”或“不一定”)
(2)如图2,在△ABC中,∠BAC=120°,△ADE是△ABC的内嵌三角形,试说明AB2=BDBC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.
(3)在(2)的条件下,如果AB=1,AC=2,求△ABC的内嵌△ADE的边长
【答案】(1)不一定;(2)成立,理由见解析;(3)
【解析】
(1)当直角三角形是等腰直角三角形时可内嵌,所以直角三角形不一定都可内嵌;(2)根据相似三角形的判断方法,得出△BDA∽△BAC,根据相似三角形对应边成比例即可得出;(3)根据△BDA∽△BAC,△AEC∽△BAC,导出DE、CE和x的关系,依据AB2=BDBC列出关于x的方程,从而求出△ABC的内嵌△ADE的边长.
当直角三角形是等腰直角三角形时可内嵌,
∴直角三角形不一定可内嵌.
(2)∵△ADE是△ABC的内嵌三角形,
∴△ADE是正三角形,
∴∠ADE=60°,
在△ADB和△BAC中,
∵∠ADB=∠BAC=120°,∠B=∠B
∴△BDA∽△BAC,
∴,
即AB2=BDBC.
(3)设BD=x,
∵△BDA∽△BAC,
∴ ,
∴
即AD=2x,
∴AE=DE=x
同理可证:△AEC∽△BAC,
∴,
∴
∴CE=4x,
∴BC=7x
由(2)可知AB2=BDBC
∴12=x﹒7x,
解得x=,
∴DE=,
∴△ABC的内嵌△ADE的边长是 .
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.
(1)当t为何值时,PQ∥BC?
(2)设四边形PQCB的面积为y,求y关于t的函数关系式;
(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;
(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于(-1,0)点,则下列结论中正确的是( )
A.c<0B.a-b+c<0C.b2<4acD.2a+b=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4 经过点A(﹣3,0),点 B 在抛物线上,CB∥x轴,且AB 平分∠CAO.则此抛物线的解析式是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,个边长为的相邻正方形的一边均在同一直线上,点,,,…分别为边,,,…,的中点,的面积为,的面积为,…的面积为,则________.(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求抛物线的函数关系式;
(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;
(3)在(2)的条件下,求△AQC面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.
(1)将△ABC绕点A顺时针旋转90°,画出相应的△AB1C1;
(2)将△AB1C1沿射线AA1平移到△A1B2C2处,画出△A1B2C2;
(3)点C在两次变换过程中所经过的路径长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).
(1)求出图象与x轴的交点A、B的坐标;
(2)在y轴上存在一点Q,使得△QMB周长最小,求出Q点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com