精英家教网 > 初中数学 > 题目详情

【题目】我们定义一种新函数:形如,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为;②图象具有对称性,对称轴是直线;③当时,函数值值的增大而增大;④当时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.

【答案】4

【解析】

坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;

根据函数的图象和性质,发现当时,函数值值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为,因此④也是正确的;从图象上看,当,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.

解:①∵坐标都满足函数,∴①是正确的;

②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;

③根据函数的图象和性质,发现当时,函数值值的增大而增大,因此③也是正确的;

④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为,因此④也是正确的;

⑤从图象上看,当,函数值要大于当时的,因此⑤时不正确的;

故答案是:4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A在反比例函数y=x0)的图象上,ABy轴于点B,点Cx轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点DOB的中点,若△ADE的面积为6,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线和抛物线都经过点A10),B,且当时,二次函数的值为

1)求的值和抛物线的解析式;

2)求不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=mx2+2mx3x轴交于Ax10),Bx20)两点,与y轴交于点C,且x2x1=4

1)求抛物线的解析式;

2)求抛物线的对称轴上存在一点P,使PA+PC的值最小,求此时点P的坐标;

3)点M是抛物线上的一动点,且在第三象限.

①当M点运动到何处时,AMB的面积最大?求出AMB的最大面积及此时点M的坐标.

②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1DEABC的边BC上,若ADE是等边三角形则称ABC可内嵌,ADE叫做ABC的内嵌三角形.

1)直角三角形______可内嵌.(填写一定一定不不一定

2)如图2,在ABC中,∠BAC=120°ADEABC的内嵌三角形,试说明AB2=BDBC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.

3)在(2)的条件下,如果AB=1AC=2,求ABC的内嵌ADE的边长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AB为⊙O直径,AB=12AD平分∠BAC,交BC于点 E,交⊙O于点D,连接BD.

1)求证:BAD=CBD

2)若∠AEB=125°,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.

抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中 事件,小悦被抽中 事件(不可能必然随机”);第一次抽取卡片小悦被抽中的概率为

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边CDRtEFG的直角边EF重合,将正方形ABCD1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点CAE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cmEF=4cm,设正方形移动时间为xs),线段EH的长为ycm),其中0≤x≤2.5

1)当x=2时,AE的长为

2)试求出y关于x的函数关系式,并求出EHDADE的面积之差;

3)当正方形ABCD移动时间x= 时,线段HD所在直线经过点B

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

同步练习册答案