精英家教网 > 初中数学 > 题目详情

【题目】如图,直线和抛物线都经过点A10),B,且当时,二次函数的值为

1)求的值和抛物线的解析式;

2)求不等式的解集.

【答案】1m=1y=x23x+2;(2x<1x>3.

【解析】

1)直接把点A10)代入直线y=x+m即可得出m的值;再把点A10)与当x=4时,y=6代入抛物线y=x2+bx+c即可得出bc的值,进而得出抛物线的解析式;

2)根据(1)中mbc的值即可得出一次函数与二次函数的解析式,故可得出B点坐标,根据函数的图象即可得出结论.

(1)∵直线y=x+m和经过点A(1,0)

∴1+m=0,解得m=1

抛物线y=x2+bx+c经过点A(1,0),且当x=4时,二次函数的值为6

,解得

抛物线的解析式为y=x23x+2

(2)∵(1)m=1,抛物线的解析式为y=x23x+2

直线的解析式为y=x1

,解得

∴B(3,2).

由函数图象可知,当x<1x>3时,二次函数的值大于一次函数的值,

不等式x2+bx+c>x+m的解集为x<1x>3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+c经过点(﹣20),且对称轴为直线x1,其部分图象如图所示.对于此抛物线有如下四个结论:

ac016a+4b+c0mn0,则x1+m时的函数值大于x1n时的函数值;点(﹣0)一定在此抛物线上.其中正确结论的序号是(  )

A. ①②B. ②③C. ②④D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点E,点G在直径DF的延长线上,∠D=G=30°.

(1)求证:CG是⊙O的切线 (2)若CD=6,求GF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是08m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为12m,又测得地面的影长为26m,请你帮她算一下,树高是(

A、325m B、425m C、445m D、475m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+ca≠0)的图象交x轴于(-10)点,则下列结论中正确的是(

A.c0B.a-b+c<0C.b2<4acD.2a+b=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°AC=BCP△ABC形内一点,且∠APB=∠APC=135°

1)求证:△CPA∽△APB

2)试求tan∠PCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4 经过点A(﹣3,0),点 B 在抛物线上,CBx轴,且AB 平分CAO.则此抛物线的解析式是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义一种新函数:形如,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为;②图象具有对称性,对称轴是直线;③当时,函数值值的增大而增大;④当时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l与直线,直线分别交于点AB,直线与直线交于点

1)求直线轴的交点坐标;

2)横、纵坐标都是整数的点叫做整点.记线段围成的区域(不含边界)为

时,结合函数图象,求区域内的整点个数;

若区域内没有整点,直接写出的取值范围.

查看答案和解析>>

同步练习册答案