【题目】今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
【答案】(1)不可能;随机;;(2)
【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;
(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得.
(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,
“小悦被抽中”是随机事件,
第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为,
故答案为:不可能, 随机, ;
(2)画树状图如下:
由树状图可知共12种可能,其中“小惠被抽中”有6种可能,
所以“小惠被抽中”的概率是: .
科目:初中数学 来源: 题型:
【题目】请仔细阅读下面两则材料,然后解决问题:
材料1:小学时我们学过,任何一个假分数都可以化为一个整数与一个真分数的和的形式,同样道理,任何一个分子次数不低于分母次数的分式都可以化为一个整式与另一个分式的和(或差)的形式,其中分式的分子次数低于分母次数.
如:.
材料2:对于式子,利用换元法,令,.则由于,所以反比例函数有最大值,且为3.因此分式的最大值为5.
根据上述材料,解决下列问题:
(1)把分式化为一个整式与另一个分式的和的形式,其中分式的分子次数低于分母次数.
(2)当的值变化时,求分式的最大(或最小)值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.
(1)判断3253和254514是否为“十三数”,请说明理由.
(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.
①求证:任意一个四位“间同数”能被101整除.
②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每一幅图中都有若干个大小不同的四边形,第1幅图中有1个四边形,第2幅图中有3个四边形,第3幅图中有5个四边形…
(1)第4幅图中有 个四边形,第5幅图中有 个四边形;
(2)根据第1幅图到第5幅图的规律,推测第幅图中有 个四边形;(用含字母的代数式表示)
(3)如果第幅图中有4039个四边形,请你计算的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】概念学习
规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.
从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.
理解概念
如图1,在中,,,请写出图中两对“等角三角形”概念应用
如图2,在中,CD为角平分线,,.
求证:CD为的等角分割线.
在中,,CD是的等角分割线,直接写出的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点D在等边△ABC的边AB上,作DG∥BC,交AC于点G,点F在边AC上,连接DF并延长,交BC的延长线于点E,FE=FD.求证:AD=CE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com