精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴、y轴建立平面直角坐标系,F是BC边上的点,过F点的反比例函数y=(k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点D处,则点F的坐标为_____

【答案】(4, ).

【解析】过点EEDOB于点D,根据折叠的性质得∠EMF=C=90°,EC=EM,CF=DF,易证RtMEMRtBMF;而EC=AC-AE=4-,CF=BC-BF=3-,得到EM=4-,MF=3-,即可得;故可得出EM:MB=ED:MF=4:3,而ED=3,从而求出BM=,然后在RtMBF中利用勾股定理得到关于k的方程(3-2=(2+(2,解方程求出k=即可得解析式y=,代入x=4得到F点的坐标(4, ).

故答案为:(4, ).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各数的序号填在相应的横线上:

①﹣5.32,②3,③﹣1,④7%,⑤0,⑥﹣5,⑦0.6,⑧+2019

1)整数有:_____

2)分数有:_____

3)负数有:_____

4)正数有:_____

5)非负数有:_____

6)有理数有:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+bx+c+1

1b=1时,求这个二次函数的对称轴的方程;

2c=b22b,问:b为何值时,二次函数的图象与x轴相切?

3若二次函数的图象与x轴交于点Ax10),Bx20),且x1x2b0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴lx轴、直线BM、直线AM分别交于点DEF,且满足=,求二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线ACBD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BCQ点.

1)求证:四边形PBQD为平行四边形.

2)若AB6cmAD8cmP从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:

阅读时间

(小时)

2

2.5

3

3.5

4

学生人数(名)

1

2

8

6

3

则关于这20名学生阅读小时数的说法正确的是(  )

A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线与坐标轴交于AB两点,以AB为斜边在第一象限内作等腰直角三角形ABC,点C为直角顶点,连接OC.

(1)直接写出= ;

(2)请你过点CCEy轴于E点,试探究OB+OACE的数量关系,并证明你的结论;

(3)若点MAB的中点,点NOC的中点,求MN的值;

(4)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且ODAD,延长DO交直线于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;

(1)求反比例函数的解析式;

(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;

(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,城市规划部门计划在城市广场的一块长方形空地上修建乙面积为1500m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为60m,宽为40m.

(1)求通道的宽度;

(2)某公司承揽了修建停车场的工程(不考虑修通道),为了尽量减少施工对城市交通的影响,实施施工时,每天的工作效率比原计划增加了20%,结果提前2天完成任务,求该公司原计划每天修建多少m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(新知理解)

如图1,点在线段上,点将线段分成两条不相等的线段,如果较长线段是较短线段倍,即,则称点是线段的一个圆周率点,此时,线段称为互为圆周率伴侣线段.由此可知,一条线段的圆周率点有两个,一个在线段中点的左侧(如图中点),另一个在线段中点的右侧.

(1)如图1,若,则 ;若点是线段的不同于点的圆周率点,则 (填“”或“)

(2)如果线段,点是线段的圆周率点,则

(问题探究)

(3)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动的滚动一周,该点到达点的位置.若点是线段的两个不同的圆周率点,求线段的长;

(问题解决)

(4)如图3,将直径为1个单位长度的圆片上的某点与数轴上表示2的点重合,并把圆片沿数轴向右无滑动的滚动一周,该点到达点的位置.若点在射线上,且线段与以中某两个点为端点的线段互为圆周率伴侣线段,请你直接写出点所表示的数.

查看答案和解析>>

同步练习册答案