精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=a(x+1)2 (a≠0)的图象经过点A(1,8).

(1)求此二次函数的表达式;

(2)写出这个二次函数图象的顶点坐标、对称轴;

(3)试判断点B(-2,2)C(m,2m-1)是否在此二次函数的图象上?

【答案】(1);(2)(-1,0);(3)B在,C不在

【解析】

(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到关于a的方程,然后解方程即可.
(2)根据图象和性质直接写出顶点坐标、对称轴即可.
(3)把点B(-2,2)C(m,2m-1)代入解析式,即可判断.

(1)∵抛物线y=a(x+1)2经过点A(1,8).

a=2,

∴此抛物线对应的函数解析式为.

(2)顶点坐标为,对称轴为直线

(3)x=2代入得

所以点B(-2,2)在此抛物线上;

x= m代入得,

所以点C(m,2m-1)不在此抛物线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:

1)乙队单独做需要多少天才能完成任务?

2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若xy都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,则下图中共有几对全等三角形(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC 中,AD BC 边上的中线.

(1)画出与ACD 关于点 D 成中心对称的三角形;

(2)找出与 AC 相等的线段;

(3)探索:ABC 中,AB+AC 与中线 AD 之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果两条线段将一个三角形分成 3个等腰三角形,我们把这两条线段叫做这个三角形的“三分线”.例如:如图①,线段把一个顶角为的等腰分成了 3个等腰三角形,则线段就是等腰的“三分线”.

1)图②是一个顶角为 45°的等腰三角形,在图中画出“三分线”,并标出每个等腰三角形顶角的度数.

2)如图③,在边上取一点,令可以分割出第一个等腰,接着又需要考虑如何将分成2个等腰三角形,即可画出所需要的三分线,类比该方法,在图④中画出的“三分线”,并标出每个等腰三角形顶角的度数;

3)在中,

①画出;(尺规画图,不写作法,保留作图痕迹)

②画出的“三分线”,并做适当的标注.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,OD⊥弦BC于点D,交⊙O于点EAEBC交于点F,点HOD延长线上一点,且∠OHB=AEC.

(1)求证:BH是⊙O的切线;

(2)求证:CE2=EF·EA

(3)若⊙O的半径为5,sinC=,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,ABC的顶点都在正方形网格的格点(网格线的交点)上.

(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);

(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;

(3)判断△ABC的形状.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点G在边DC的延长线上,AG交边BC于点E,交对角线BD于点F.

(1)求证:AF2=EFFG;

(2)如果EF=,FG=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.

(1)该种干果第一次的进价是多少?

(2)超市销售这种干果共盈利多少元?

查看答案和解析>>

同步练习册答案