精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E.
(1)求证:MC•BC=DM•AC;
(2)若tanA=
23
,AD=6,求BE的长.
分析:(1)由在△ABC中,∠ACB=90°,CM是斜边AB的中线,根据直角三角形斜边的中线等于斜边的一半,可得CM=AM=BM=
1
2
AB,即可证得∠A=∠ACM,继而证得△CDM∽△ABC,然后由相似三角形的对应边成比例,证得MC•BC=DM•AC;
(2)由tanA=
2
3
,可得在Rt△CDM中,
DM
CM
=
2
3
,易证得△ADM∽△EBM,然后由相似三角形的对应边成比例,求得BE的长.
解答:(1)证明:∵在△ABC中,∠ACB=90°,CM是斜边AB的中线,
∴CM=AM=BM=
1
2
AB,
∴∠A=∠ACM,
∵CM⊥DE,
∴∠CMD=∠ACB=90°,
∴△CDM∽△ABC,
∴MC:AC=DM:BC,
∴MC•BC=DM•AC;

(2)解:∵∠A=∠ACM,tanA=
2
3

∴在Rt△CDM中,
DM
CM
=
2
3

∵CM=BM,
∴DM:BM=2:3,
∵∠ACM+∠BCM=∠BCM+∠E=90°,
∴∠ACM=∠E,
∴∠A=∠E,
∵∠AMD=∠EMB,
∴△ADM∽△EBM,
∴AD:BE=DM:BM,
∵AD=6,
∴BE=
3
2
×6=9.
点评:此题考查了相似三角形的判定与性质、直角三角形斜边的中线的性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案