精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,直线y=-数学公式分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.
作业宝
(1)填空:b=______;
(2)求点D的坐标;
(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.

解:(1)∵直线y=-分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),
∴-×8+b=0,
解得:b=6,;

(2)如图1,过点D作DE⊥x轴于点E,
则∠AOB=∠DEA=90°,
∴∠1+∠2=90°,∠2+∠3=90,
∴∠1=∠3,
又∵四边形ABCD是正方形,
∴AB=DA,
∵在△AOB和△DEA中,

∴△AOB≌△DEA(AAS),
∴OA=DE=8,OB=AE=6,
∴OE=OA+AE=8+6=14,
∴点D的坐标为(14,8);

(3)存在.
①如图2,当OM=MB=BN=NO时,四边形OMBN为菱形.连接NM,交OB于点P,则NM与OB互相垂直平分,
∴OP=OB=3,
∴当y=3时,-x+6=3,
解得:x=4,
∴点M的坐标为(4,3),
∴点N的坐标为(-4,3).
②如图3,当OB=BN=NM=MO=6时,四边形BOMN为菱形.延长NM交x轴于点P,则MP⊥x轴.
∵点M在直线y=-x+6上,
∴设点M的坐标为(a,-a+6)(a>0),
在Rt△OPM中,OP2+PM2=OM2
即:a2+(-a+6)2=62
整理得:a2-9a=0,
∵a>0,
a-9=0,
解得:a=
∴点M的坐标为(),
∴点N的坐标为().
综上所述,x轴上方的点N有两个,分别为()和(-4,3).
故答案为:6.
分析:(1)由直线y=-分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),即可求得b的值;
(2)首先过点D作DE⊥x轴于点E,易证得△AOB≌△DEA,则可求得DE与AE的长,继而可求得点D的坐标;
(3)分别从当OM=MB=BN=NO时,四边形OMBN为菱形与当OB=BN=NM=MO=6时,四边形BOMN为菱形去分析求解即可求得答案.
点评:此题考查了待定系数法求函数的解析式、全等三角形的判定与性质、正方形的性质、菱形的性质以及勾股定理.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案