精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,ABC=45°,DBC边上的一点,BD=2,将△ACD沿直线AD翻折,点C刚好落在AB边上的点E.P是直线AD上的动点,则△PEB的周长的最小值是________

【答案】

【解析】

连接CE,交ADM,根据折叠和等腰三角形性质得出当PD重合时,PE+BP的值最小,此时BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BCBE长,代入求出即可.

如图,

连接CE,交ADM,

∵沿AD折叠CE重合,

∴∠ACD=AED=90°,AC=AE,CAD=EAD,

AD垂直平分CE,即CE关于AD对称,BD=2,

CD=DE=

∴当PD重合时,PE+BP的值最小,即此时BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,

∵∠DEA=90°

∴∠DEB=90°

∵∠ABC=45°

∴∠B=45°

DE=

BE=

BC=2+

∴△PEB的周长的最小值是BC+BE=2++=2+2

故答案为:2+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:|﹣4|﹣22+ ﹣tan60°(说明:本题不允许使用计算器计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AFAB;
(3)若⊙O的直径为10,AC=2 ,AB=4 ,求△AFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ABMN和正方形ACDE,CN、BE交于点P. 求证:∠ANC = ∠ABE.

应用:Q是线段BC的中点,连结PQ. 若BC = 6,则PQ = ___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在开展“美丽广西,清洁乡村”的活动中某乡镇计划购买A、B两种树苗共100棵,已知A种树苗每棵30元,B种树苗每棵90元.
(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请你写出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)如果购买A、B两种树苗的总费用不超过7560元,且B种树苗的棵数不少于A种树苗棵数的3倍,那么有哪几种购买树苗的方案?
(3)从节约开支的角度考虑,你认为采用哪种方案更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖州某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买AB两种型号的污水处理设备共10台,具体情况如下表:

A

B

价格(万元/台)

15

12

月污水处理能力(吨/月)

250

200

经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.

(1)该企业有哪几种购买方案?

(2)哪种方案更省钱?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在开展“美丽广西,清洁乡村”的活动中某乡镇计划购买A、B两种树苗共100棵,已知A种树苗每棵30元,B种树苗每棵90元.
(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请你写出y与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)如果购买A、B两种树苗的总费用不超过7560元,且B种树苗的棵数不少于A种树苗棵数的3倍,那么有哪几种购买树苗的方案?
(3)从节约开支的角度考虑,你认为采用哪种方案更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案