精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

【答案】
(1)

解:把B(1,0)代入y=ax2+2x﹣3,

可得a+2﹣3=0,解得a=1,

∴抛物线解析式为y=x2+2x﹣3,

令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,

∴A点坐标为(﹣3,0).


(2)

解:若y=x平分∠APB,则∠APO=∠BPO,

如图1,若P点在x轴上方,PA与y轴交于点B′,

由于点P在直线y=x上,可知∠POB=∠POB′=45°,

在△BPO和△B′PO中

∴△BPO≌△B′PO(ASA),

∴BO=B′O=1,

设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得

,解得

∴直线AP解析式为y= x+1,

联立 ,解得

∴P点坐标为( );

若P点在x轴下方时,同理可得△BOP≌△B′OP,

∴∠BPO=∠B′PO,

又∠B′PO在∠APO的内部,

∴∠APO≠∠BPO,即此时没有满足条件的P点,

综上可知P点坐标为( ).


(3)

解:如图2,作QH⊥CF,交CF于点H,

∵CF为y= x﹣

∴可求得C( ,0),F(0,﹣ ),

∴tan∠OFC= =

∵DQ∥y轴,

∴∠QDH=∠MFD=∠OFC,

∴tan∠HDQ=

不妨设DQ=t,DH= t,HQ= t,

∵△QDE是以DQ为腰的等腰三角形,

∴若DQ=DE,则SDEQ= DEHQ= × t×t= t2

若DQ=QE,则SDEQ= DEHQ= ×2DHHQ= × t= t2

t2 t2

∴当DQ=QE时△DEQ的面积比DQ=DE时大.

设Q点坐标为(x,x2+2x﹣3),则D(x, x﹣ ),

∵Q点在直线CF的下方,

∴DQ=t= x﹣ ﹣(x2+2x﹣3)=﹣x2 x+

当x=﹣ 时,tmax=3,

∴(SDEQmax= t2=

即以QD为腰的等腰三角形的面积最大值为


【解析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;
    (2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;
    (3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值. 本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等.在(2)中确定出直线AP的解析式是解题的关键,在(3)中利用DQ表示出△QDE的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,ABC=45°,DBC边上的一点,BD=2,将△ACD沿直线AD翻折,点C刚好落在AB边上的点E.P是直线AD上的动点,则△PEB的周长的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB= ,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).

时间x(天)

1

30

60

90

每天销售量p(件)

198

140

80

20


(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.

(1)如图1,求C点坐标;

(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;

(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,a、b、c分别是ABC的对边,下列条件不能判断ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a=7,b=24,c=25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰RtOBF、等腰RtABE,连接EFOMP点,当点B在射线OM上移动时,PB的长度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的长度随B点的运动而变化

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF结果精确到米)

查看答案和解析>>

同步练习册答案