精英家教网 > 初中数学 > 题目详情

【题目】如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰RtOBF、等腰RtABE,连接EFOMP点,当点B在射线OM上移动时,PB的长度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的长度随B点的运动而变化

【答案】B

【解析】

作辅助线,首先证明ABO≌△BEN,得到BO=ME;进而证明BPF≌△MPE,即可解决问题.

如图,过点EENBM,垂足为点N,

∵∠AOB=ABE=BNE=90°

∴∠ABO+BAO=ABO+NBE=90°

∴∠BAO=NBE,

∵△ABE、BFO均为等腰直角三角形,

AB=BE,BF=BO;

ABOBEN中,

∴△ABO≌△BEN(AAS),

BO=NE,BN=AO;

BO=BF,

BF=NE,

BPFNPE中,

∴△BPF≌△NPE(AAS),

BP=NP=BN;而BN=AO,

BP=AO=×8=4,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是∠ABC平分线,DEAB于E,AB=36cm,BC=24cm,S△ABC =144cm2,则DE的长是( )

A. 4.8cm B. 4.5cm C. 4 cm D. 2.4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理如图①,在△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l的同侧,,垂足分别为.求证AEC≌△CDB.

(2)类比探究如图②,在RtABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°AB,连接CB,求△ACB的面积.

(3)拓展提升:如图③,在△EBC中,∠E=ECB=60°,EC=BC=3,OBC上,且OC=2,动点P从点E沿射线EC以每秒1个单位长度的速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点 F恰好落在射线EB上,求点P运动的时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.

(1)求证:AG=CG.
(2)求证:AG2=GEGF.

查看答案和解析>>

同步练习册答案