精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

【答案】
(1)-2;-3;(﹣1,0)
(2)

解:存在.

理由:如图所示:

①当∠ACP1=90°.

由(1)可知点A的坐标为(3,0).

设AC的解析式为y=kx﹣3.

∵将点A的坐标代入得3k﹣3=0,解得k=1,

∴直线AC的解析式为y=x﹣3.

∴直线CP1的解析式为y=﹣x﹣3.

∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),

∴点P1的坐标为(1,﹣4).

②当∠P2AC=90°时.

设AP2的解析式为y=﹣x+b.

∵将x=3,y=0代入得:﹣3+b=0,解得b=3.

∴直线AP2的解析式为y=﹣x+3.

∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),

∴点P2的坐标为(﹣2,5).

综上所述,P的坐标是(1,﹣4)或(﹣2,5).


(3)

解:如图2所示:连接OD.

由题意可知,四边形OFDE是矩形,则OD=EF.

根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.

由(1)可知,在Rt△AOC中,

∵OC=OA=3,OD⊥AC,

∴D是AC的中点.

又∵DF∥OC,

∴DF= OC= .DF= OC=

∴点P的纵坐标是-

,解得:

∴当EF最短时,点P的坐标是:( ,- )或( ,- ).


【解析】解:(1)∵将点A和点C的坐标代入抛物线的解析式得: ,解得:b=﹣2,c=﹣3.
∴抛物线的解析式为y=x2﹣2x﹣3.
∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.
∴点B的坐标为(﹣1,0).
所以答案是:﹣2;﹣3;(﹣1,0).
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点和垂线段最短的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.;连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.

(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;
(2)将线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;
(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).

时间x(天)

1

30

60

90

每天销售量p(件)

198

140

80

20


(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,a、b、c分别是ABC的对边,下列条件不能判断ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a=7,b=24,c=25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,
PE=y.

(1)求y与x的函数关系式;
(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰RtOBF、等腰RtABE,连接EFOMP点,当点B在射线OM上移动时,PB的长度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的长度随B点的运动而变化

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).

(1)在图中作出ABC关于y轴对称的A1B1C1

(2)写出点A1,B1,C1的坐标(直接写答案):A1_________;B1________;C1________;

(3)求A1B1C1的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=5,BC=10 ,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为

查看答案和解析>>

同步练习册答案