精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=5,BC=10 ,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为

【答案】75
【解析】解:设圆弧的圆心为O,与AD切于E,
连接OE交BC于F,连接OB、OC,
设圆的半径为x,则OF=x﹣5,
由勾股定理得,OB2=OF2+BF2
即x2=(x﹣5)2+(5 2
解得,x=5,
则∠BOF=60°,∠BOC=120°,
则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)
=10 ×5﹣ + ×10 ×5=75
所以答案是:75

【考点精析】本题主要考查了矩形的性质和切线的性质定理的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及平行四边形ABDC的面积.

(2)在y轴上是否存在一点P,连接PA,PB,使=2,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

(3)点P是四边形ABCD边上的点,若△OPC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )

A. 1 3 B. 5 C. 1.522.5 D.

【答案】C

【解析】A12+2≠32,不能构成直角三角形,故选项错误;

B(2+2≠52,不能构成直角三角形,故选项错误;

C1.52+22=2.52,能构成直角三角形,故选项正确;

D、(2+22,不能构成直角三角形,故选项错误.

故选:C

型】单选题
束】
3

【题目】在RtABC中,C=90°,AC=9,BC=12,则点C到斜边AB的距离是( )

ABC9D6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;

(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B、E的距离,已经测得ABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.

(1)求证:AG=CG.
(2)求证:AG2=GEGF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:
﹣1)÷ ,其中x的值从不等式组 的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的网格中,线段AB和直线a如图所示,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在格点上.

(1)在图中画出以线段AB为一边的正方形 ABCD,且点C和点D均在格点上,

并直接写出正方形 ABCD的面积为   

(2)在图中以线段AB为一腰的等腰三角形ABE,点E在格点上,则满足条件的点E_____ 个;

(3)在图中的直线a上找一点Q,使得△QAB的周长最小.

查看答案和解析>>

同步练习册答案