精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①CE=BF;②AE=DF;③BF∥CE;④△BDF≌△CDE;⑤△ABD和△ACD面积相等.其中正确的有(  )
分析:作AG⊥BC于G,根据中线的性质可以得出BD=CD,就可以表示出S△ABD=S△ACD,再由SAS就可以得出△BDF≌△CDE,就可以得出∠FBD=∠ECD,BF=CE,DF=DE,就可以得出BF∥CE,从而得出结论.
解答:解:作AG⊥BC于G,
∵AD是△ABC的中线,
∴BD=CD.
∴BD•AG=CD•AG,
BD•AG
2
=
CD•AG
2

∵S△ABD=
BD•AG
2
,S△ACD=
CD•AG
2

∴S△ABD=S△ACD,故⑤正确;
在△BDF和△CDE中,
BD=CD
∠BDF=∠CDE
DF=DE

∴△BDF≌△CDE(ASA),故④正确;
∴∠FBD=∠ECD,
BF=CE,故①正确
DF=DE,故②错误,
∴BF∥CE故③正确.
∴正确的有4个.
故选C.
点评:本题考查了全等三角形的判定与性质的运用,三角形中线的性质的运用,平行线的判定的运用,三角形的面积的等积变化的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案