【题目】如图,D为Rt△ABC斜边AB上一点,以CD为直径的圆分别交△ABC三边于E、F、G三点,连接FE,FG.
(1)求证:∠EFG=∠B;
(2)若AC=2BC=4,D为AE的中点,求FG的长.
【答案】(1)证明见解析;(2)4
【解析】试题分析:(1)连接EC,则∠AEC=90°,由同角的余角相等即可得出∠B=∠ECA,再根据圆周角定理即可得出∠ECA=∠EFG,由此即可证出∠EFG=∠B;
(2)由AC、BC的长度利用勾股定理即可求出AB的长度,结合面积法即可得出CE的长度,由正切即可得出AE的长度,再利用勾股定理可求出CD的长度,连接FD、DG,由矩形的判定定理即可证出四边形FCGD为矩形,利用矩形的性质即可得出FG=CD,此题得解.
试题解析:(1)证明:连接EC,如图1所示.
∵CD为直径,
∴∠AEC=90°,
∴∠BCE+∠B=90°.
∵∠BCE+∠ECA=90°,
∴∠B=∠ECA.
又∵∠ECA=∠EFG,
∴∠EFG=∠B;
(2)解:在Rt△BCA中,AC=4,BC=2,
∴AB==10.
∵BCAC=ABCE,
∴CE=4.
∵tan∠A=,
∴AE=2CE=8.
在Rt△DCG中,CE=4,ED=AE=4,
∴CD==4.
连接FD、DG,如图2所示.
∵CD是直径,
∴∠CFD=∠CGD=90°,
又∵∠FCG=90°,
∴四边形FCGD为矩形,
∴FG=CD=4.
科目:初中数学 来源: 题型:
【题目】学校准备购买A、B两种奖品,奖励成绩优异的同学.已知购买1件A奖品和1件B奖品共需18元;购买30件A奖品和20件B奖品共需480元.
(1)A、B两种奖品的单价分别是多少元?
(2)如果学校购买两种奖品共100件,总费用不超过850元,那么最多可以购买A奖品多少件.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三位数,如果把它的个位数字与百位数字交换位置,那么所得的新数比原数小99,且各位数字之和为14,十位数字是个位数字与百位数字之和.求这个三位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级学生准备去购买《英汉词典》一书,此书标价为20元。现A、B两书店都有此书出售,A店按如下方法促销:若只购一本,则按标价销售;若一次性购买多于一本,但不多出20本时,每多购一本,每本销售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买三本价优惠4%,以此类推);若购买多于20本时,每本售价为12元,B店一律按标价的7折销售;
(1)试分别写出在两书店购此书的总价yA、yB与购本书数x之间的函数关系式.
(2)若某班一次性购买多于20本时,那么去哪家书店购买更合算?为什么?若要一次性购买不多于20本时,先写出y(y=yA-yB)与购书本数x之间的函数关系式,并在图中画出其函数图象,再利用函数图象分析去哪家书店购买更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=m是平行于X轴的直线,将抛物线y=-x2-4x在直线y=m上侧的部分沿直线 y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图像,若新的函数图像刚好与 直线y=-x有3个交点,则满足条件的m 的值为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.
如:
因此,4,12,20这三个数都是神秘数.
(1)28和2012这两个数是不是神秘数?为什么?
(2)设两个连续偶数为和(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.
(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数 y=kx+b(k≠0)的图象经过点(-1,-5),(2,1)两点.
(1)求 k 和 b 的值;
(2)一次函数 y=kx+b 图象与坐标轴所围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,直线a为对称轴,A和C都在对称轴上.
(1)△ABC以直线a为对称轴作△AB1C;
(2)若∠BAC=30°,则∠BAB1=______°;
(3)求△ABB1的面积等于______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com