精英家教网 > 初中数学 > 题目详情

【题目】如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=______米.

【答案】58;

【解析】

过点AAE⊥CD于点E,可得四边形ABCE为矩形,根据矩形的性质得AE=BC=30米,AB=CE=28米,在Rt△DAE中可得DE=AE=30m,根据DC=DE+EC即可求得DC的长.

过点AAE⊥CD于点E,

∵AB⊥BC,DC⊥BC,

∴四边形ABCE为矩形,

∴AE=BC=30米,AB=CE=28米,

根据题意得,在Rt△DAE中,∠DAE=45°,

DE=AE=30m,

∴DC=DE+EC=58m.

故答案为:58.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知,小明按如下步骤作图:

1)以点O为圆心,适当长为半径画弧,交OAD,交OB于点E

2)分别以点DE为圆心,大于的长为半径画弧,两弧在的内部相交于点C

3)画射线OC

根据上述作图步骤,下列结论正确的有( )个

①射线OC的平分线;②点O和点C关于直线DE对称;③射线OC垂直平分线段DE;④.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块铁皮,拱形边缘呈抛物线状,MN=4,抛物线顶点处到边MN的距离是4,要在铁皮上截下一矩形ABCD,使矩形顶点BC落在边MN上,AD落在抛物线上.

1)如图建立适当的坐标系,求抛物线解析式;

2)设矩形ABCD的周长为L,点C的坐标为(m0),求Lm的关系式(不要求写自变量取值范围).

3)问这样截下去的矩形铁皮的周长能否等于9.5,若不等于9.5,请说明理由,若等于9.5,求出吗的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=x2+bx+c(b,c都是常数)的图象经过点(1,0)和(0,2).

(1)当﹣2≤x≤2时,求y的取值范围.

(2)已知点P(m,n)在该函数的图象上,且m+n=1,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程的两个实数根的平方和是,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中正确的有( .

①已知任意一边和一个锐角对应相等的两个直角三角形全等.

②任意两角和一边对应相等的两个三角形全等.

③已知任意两边和一角对应相等的两个三角形全等.

④已知腰和顶角对应相等的两个等腰三角形全等.

⑤如果两个三角形有两条边及其中一边上的中线分别相等,那么这两个三角形全等.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面AB两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4cos25°≈0.9tan25°≈0.51.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.

(1)若∠ABC=70°,则∠NMA的度数是   度.

(2)若AB=8cm,MBC的周长是14cm.

①求BC的长度;

②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料:一般地,若),那么叫做以为底的对数,记作,比如指数式可以转化为对数式,对数式可以转化为指数式

根据以上材料,解决下列问题:

1)计算:

2)观察(1)中的三个数,猜测: ),并加以证明这个结论

3)已知:,求的值().

查看答案和解析>>

同步练习册答案