【题目】如图,一次函数y1=k1x+b 与反比例函数 的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.
(1)y1=___,y2= ;
(2)根据函数图象可知,当 y1<y2时,x的取值范围是 ;
(3)过点A作AD⊥x轴于点D,求△ABD的面积.
(4)点P是反比例函数图象上一点,△POD的面积是5,求点P的坐标.
【答案】(1);;(2)或;(3)24;(4) P( ,5)或( ,-5 )
【解析】
(1)由点的坐标利用待定系数法即可求出反比例函数解析式;由点在反比例函数图象上结合点的横坐标即可得出点的坐标,再由点、的坐标利用待定系数法即可求出一次函数解析式;
(2)根据两函数图象的上下位置关系,即可找出不等式的解;
(3)连接,由点的坐标可求出点的坐标,由两点间的距离公式即可求出、、的长度,再根据三角形的面积公式即可求出的面积;
解:(1)点在反比例函数 的图象上,
,解得:,
反比例函数解析式为.
点在反比例函数的图象上,
,即.
将、代入中,
得,解得:,
一次函数.
故答案为:;.
(2)观察函数图象,发现:
当或时,一次函数图象在反比例函数图象的下方,
当时,的取值范围是或.
故答案为:或.
(3)连接,如图1所示,
点,
点,
,
.
(4)OD=2 △POD的面积是5
点P的纵坐标为±5,点P是反比例函数图象上一点
P ( ,5)或( ,-5 )
科目:初中数学 来源: 题型:
【题目】(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.
(3)试比较第6天和第13天的销售金额哪天多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a-b|.利用此结论,回答以下问题:
(1)数轴上表示2和5的两点的距离是 ,数轴上表示-20和-5的两点之间的距离是 ,数轴上表示15和-30的两点之间的距离是 .
(2)数轴上表示x和-1的两点A,B之间的距离是 ,如果|AB|=2,那么x是
(3)式子|x+1|+|x-2|+|x-3|的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为( )
A.8cmB.6cmC.4cmD.2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2= ( )
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
又∵∠BAC=70°
∴∠AGD=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。若DE=1,则BC的长为( )
A.2+B.C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,为线段上的一个动点,分别以,为边在的同侧作菱形和菱形,点,,在一条直线上,,、分别是对角线,的中点,当点在线段上移动时,线段的最小值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com