精英家教网 > 初中数学 > 题目详情

【题目】如图1,在ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.

(1)E=   °;

(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.

①依题意在图1中补全图形;

②求∠AFC的度数;

(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=AFC,设ECAB的交点为H,射线HN在∠AHC的内部且∠AHN=AHC,射线HNFM交于点P,若∠FAH,FPH和∠FCH满足的数量关系为∠FCH=mFAH+nFPH,请直接写出m,n的值.

【答案】(1)45;(2)67.5°;(3)m=2,n=﹣3.

【解析】

(1)根据角平分线的定义可得∠CAF=DAC,ACE=ACB,设∠CAF=x,ACE=y,根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案;

(2)①根据角平分线的尺规作图的方法作出图形即可;

②如图2,由CF平分∠ECB可得∠ECF=y,再根据∠E+EAF=F+ECF以及∠E+EAB=B+ECB,可推导得出45°+=F+y,由此即可求得答案;

(3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=EAF=α,根据已知可推导得出∠FCH=α﹣22.5,α+22.5=30+FCH+FPH②,由此可得∠FPH=再根据∠FCH=mFAH+nFPH,即可求得答案.

1)如图1,

EA平分∠DAC,EC平分∠ACB,

∴∠CAF=DAC,ACE=ACB,

设∠CAF=x,ACE=y,

∵∠B=90°,

∴∠ACB+BAC=90°,

2y+180﹣2x=90,

x﹣y=45,

∵∠CAF=E+ACE,

∴∠E=CAF﹣ACE=x﹣y=45°,

故答案为:45;

(2)①如图2所示,

②如图2,CF平分∠ECB,

∴∠ECF=y,

∵∠E+EAF=F+ECF,

45°+EAF=F+y

同理可得:∠E+EAB=B+ECB,

45°+2EAF=90°+y,

∴∠EAF=

把②代入①得:45°+=F+y,

∴∠F=67.5°,

即∠AFC=67.5°;

(3)如图3,设∠FAH=α,

AF平分∠EAB,

∴∠FAH=EAF=α,

∵∠AFM=AFC=×67.5°=22.5°,

∵∠E+EAF=AFC+FCH,

45+α=67.5+FCH,

∴∠FCH=α﹣22.5

∵∠AHN=AHC=B+BCH)=(90+2FCH)=30+FCH,

∵∠FAH+AFM=AHN+FPH,

α+22.5=30+FCH+FPH,

把①代入②得:∠FPH=

∵∠FCH=mFAH+nFPH,

α﹣22.5=mα+n

解得:m=2,n=﹣3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有两个相等的实数根;
④抛物线与x轴的另一个交点是(﹣1,0);
⑤当1<x<4时,有y2<y1
其中正确的是(

A.①②③
B.①③④
C.①③⑤
D.②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;

(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?说明理由

(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:

售价(元/件)

100

110

120

130

月销量(件)

200

180

160

140

已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 ()元;②月销量是 ()件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红的奶奶开了一个金键牛奶销售店,主要经营金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:

(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高

(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定

(3)假如你是小红,会给奶奶哪些建议?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为

查看答案和解析>>

同步练习册答案