【题目】如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF平分∠AOD,∠AOE=36°.
(1)求∠COD的度数;
(2)求∠BOF的度数.
【答案】(1)144°;(2)63°
【解析】
(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE计算即可;
(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD和∠DOF,利用角的和差关系即可求出∠BOF.
(1)∵∠AOC=90°,
∴∠COE=90°﹣AOE=90°﹣36°=54°,
∴∠COD=∠DOE+∠COE=90°+54°=144°;
(2)∵∠DOE=90°,∠AOE=36°,
∴∠AOD=90°﹣36°=54°,
∵∠AOB=90°,
∴∠BOD=90°﹣54°=36°,
∵OF平分∠AOD,
∴∠DOF=∠AOD=27°,
∴∠BOF=36°+27°=63°.
科目:初中数学 来源: 题型:
【题目】在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5).
(1)求这个二次函数的表达式;
(2)该男生把铅球推出去多远?(精确到0.01米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把棱长为的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)
该几何体中有多少个小正方体?
画出从正面看到的图形;
写出涂上颜色部分的总面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列分式方程解应用题
“六一”前夕,某商场用7200元购进某款电动玩具销售.由于销售良好,过了一段时间,商场又用14800元购进这款玩具,所购数量是第一次购进数量的2倍,但每件价格比第一次购进贵了2元.
(1)求该商场第一次购进这款玩具多少件?
(2)设该商场两次购进的玩具按相同的标价销售,最后剩下的80件玩具按标价的六折再销售,若两次购进的玩具全部售完,且使利润不低于4800元,则每件玩具的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,一次函数的图象分别与轴交于两点,正比例函数的图象与交于点
(1)求的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把数轴上表示数一1的点称为离心点,记作点Φ.对于两个不同的点M和N,若M,N两点到离心点Φ的距离相等,则称点M,N互为离心变换点,例如:如图,因为表示数一3的点M和表示数1的点N,它们与离心点重的距离都是2个单位长度,所以点M,N互为离心变换点.
(1)已知点A表示数a,点B表示数b,且点A,B互为离心变换点
①若a=-4,则b= ;若b=π,则a= ;
②用含a的式子表示b,则b= ;
③若把点A表示的数乘以3,再把所得数表示的点沿着数轴向左移动3个单位长度恰好到点B,求点A表示的数;
(2)若数轴上的点P表示数m.对点P做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的离心变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的离心变换点,…,依此顺序不断地重复,得到点Ps,P6,…,Pn,已知点P2019表示的数是-5,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a、b、c满足(a-)2++=0,
(1)求a、b、c的值.
(2)试问以a、b、c为边能否构成直角三角形?若能构成,求出直角三角形周长;若不能构成直角三角形,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:
每台甲型收割机的租金 | 每台乙型收割机的租金 | |
A地区 | 1800元 | 1600元 |
B地区 | 1600元 | 1200元 |
设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;
若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com