【题目】如图,已知以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为弧BE的中点,连接AD交OE于点F,若AC=FC
(Ⅰ)求证:AC是⊙O的切线;
(Ⅱ)若BF=5,DF=,求⊙O的半径.
【答案】(1)证明见解析;(2)4.
【解析】
试题分析:(1)连接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求出∠OAD+∠CAF=90°,根据切线的判定推出即可;
(2)OD=r,OF=8﹣r,在Rt△DOF中根据勾股定理得出方程r2+(8﹣r)2=()2,求出即可.
试题解析:(1)连接OA、OD,
∵D为弧BE的中点,
∴OD⊥BC,
∠DOF=90°,
∴∠D+∠OFD=90°,
∵AC=FC,OA=OD,
∴∠CAF=∠CFA,∠OAD=∠D,
∵∠CFA=∠OFD,
∴∠OAD+∠CAF=90°,
∴OA⊥AC,
∵OA为半径,
∴AC是⊙O切线;
(2)∵⊙O半径是r,
∴OD=r,OF=5﹣r,
在Rt△DOF中,r2+(5﹣r)2=()2,
r=4,r=1(舍),
即⊙O的半径r为4.
科目:初中数学 来源: 题型:
【题目】下列命题不正确的是( )
A.对角线互相平分且一组邻边相等的四边形是菱形
B.两组对边分别平行且一组邻边相等的四边形是菱形
C.两组对角分别相等且一组邻边相等的四边形是菱形
D.对角线互相垂直且相等的四边形是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有实数根,求实数m的取值范围;
(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80,则这组数据的中位数和众数分别是( )
A. 90,80 B. 70,80
C. 80,80 D. 100,80
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A.a=b
B.a=3b
C.a=2b
D.a=4b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com