【题目】某小学开展4种课外兴趣小组活动,分别为A;绘画:B;机器人:C;跳舞:D;吉他.每个学生都要选取一个兴趣小组参与活动,小明对同学们选取的活动形式进行了随机抽样调查,根据调查统计结果,绘制了如下的统计图:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生500人,则选择“机器人”活动的学生估计有多少人?
(3)学校让每班同学在A,B,C,D四种活动形式中,随机抽取两种开展活动,请用树状图或列表法的方法,求每班抽取的两种形式恰好是“绘画”和“机器人”的概率.
【答案】(1)见解析(2)50人(3)
【解析】(1)根据统计图中A类人数与它所占的百分比可得到调查的总人数,根据百分比之和为1可得a的值,然后用总人数分别减去A、C、D类的人数得到B类人数,再补全条形统计图;
(2)总人数乘以样本中B的百分比可得;
(3)画树状图展示所有12种等可能的结果数,再找出某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数,然后根据概率公式求解.
(1)本次调查的学生人数为120÷40%=300(人),
a%=140%30%20%=10%,
∴a=10,
B类别人数为300×10%=30,
补全图形如下:
(2)500×10=50(人),
答:选择“机器人”活动的学生估计有50人;
(3)画树状图为:
共有12种等可能的结果数,其中某班所抽到的两项方式恰好是“绘画”和“机器人”的结果数为2,
所以某班所抽到的两项方式恰好是“绘画”和“机器人”的概率
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一渔船由西往东航行,在点测得海岛位于北偏东的方向,前进海里到达点,此时,测得海岛位于北偏东的方向,则海岛到航线的距离等于________海里.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是△ABC的内心,AE的延长线交△ABC的外接圆于点D.
(1)BD与DE相等吗?为什么?
(2)若∠BAC=90°,DE=4,求△ABC外接圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(2,1)是正比例函数ykx(其中k0)和反比例函数y(其中t0)的图像在第一象限的交点,点B是这两个函数图像的另一个交点,点C是x轴上一点.
(1)求这两个函数的解析式并直接写出点B的坐标;
(2)求当ABC为等腰三角形时,点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC的平分线BF交DE于△ABC内一点P,连接PC.
(1)若∠ABP=32°,求∠ACP的度数;
(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为( )
A. 2 B. ﹣2 C. ﹣1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.
(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.
(3)在(2)的条件下,求线段DE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com