【题目】凸四边形的四个顶点满足:每一个顶点到其他三个顶点距离之积都相等.则四边形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
【答案】D
【解析】
根据每一个顶点到其他三个顶点距离之积都相等,可得S=ABADAC…①,S=BABDBC…②,S=CACBCD…③,S=DADBDC…④,然后由②、④得ABBC=ADCD(1),由①、③得BCCD=ABAD(2),再由(1)除以(2)可得AB=CD,同样的方法可得BC=AD,AC=BD,由此即可判定四边形的形状.
以A点的角度看,S=ABADAC…①
以B点的角度看,S=BABDBC…②
以C点的角度看,S=CACBCD…③
以D点的角度看,S=DADBDC…④
由②、④得ABBC=ADCD…(1)
由①、③得BCCD=ABAD…(2)
由(1)÷(2)得,
,
∴CD2=AB2,即CD=AB,
同理可得:BC=AD,AC=BD,
∴四边形ABCD是矩形,
故选D.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠MAN的度数为_________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在矩形中,,,四边形的三个顶点、、分别在矩形边、、上,.
如图,当四边形为正方形时,求的面积;
如图,当四边形为菱形时,设,的面积为,求关于的函数关系式,并写出函数的定义域.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,点D,E分别在直线BC,AC上.
(1)如图1,当BD=CE时,连接AD与BE交于点P,则线段AD与BE的数量关系是____________;∠APE的度数是_______________;
(2)如图2,若“BD=CE”不变,AD与EB的延长线交于点P,那么(1)中的两个结论是否仍然成立?请说明理由.
(3)如图3,若AE=BD,连接DE与AB边交于点M,求证:点M是DE的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤6,请写出y与x的函数关系式.
(2)若x>6,请写出y与x的函数关系式.
(3)在同一坐标系下,画出以上两个函数的图象.
(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com