【题目】已知△ABC是等边三角形,点D,E分别在直线BC,AC上.
(1)如图1,当BD=CE时,连接AD与BE交于点P,则线段AD与BE的数量关系是____________;∠APE的度数是_______________;
(2)如图2,若“BD=CE”不变,AD与EB的延长线交于点P,那么(1)中的两个结论是否仍然成立?请说明理由.
(3)如图3,若AE=BD,连接DE与AB边交于点M,求证:点M是DE的中点.
【答案】(1)AD=BE;∠APE=60°;(2)成立,理由见解析;(3)见解析
【解析】
(1)利用等边三角形的性质和SAS可证△ABD≌△BCE,可得AD=BE,∠BAD=∠CBE,进一步即可求出∠APE的度数;
(2)同(1)的思路可证△ABD≌△BCE,从而可得AD=BE,∠BAD=∠CBE,再利用角的转化和三角形的内角和即可求出∠APE的度数,进而可得结论;
(3)如图3,过点E作EF∥BC交AB于点F,易得△AEF是等边三角形,再利用AAS证明△MEF≌△MDB,问题即得解决.
解:(1)AD=BE;∠APE=60°.
理由是:如图1,∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠C=60°,
又∵BD=CE,
∴△ABD≌△BCE(SAS),
∴AD=BE,∠BAD=∠CBE,
又∵∠APE=∠BAD+∠ABE,
∴∠APE=∠CBE+∠ABE=∠ABC=60°;
(2)结论:“AD=BE,∠APE=60°”仍然成立.
理由如下:如图2,∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=60°,
∴∠ABD=∠BCE=120°,
又BD=CE,
∴△ABD≌△BCE(SAS),
∴AD=BE,∠BAD=∠CBE,
∵∠ABP+∠CBE=180°-∠ABC=120°,
∴∠ABP+∠BAD=120°,
∴∠APE=180°-120°=60°.
(3)证明:如图3,过点E作EF∥BC交AB于点F,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∴∠AFE=∠AEF=60°,
则△AEF是等边三角形,
∴EF=AE=BD,
又∠EFM=∠DBM,∠EMF=∠DMB,
∴△MEF≌△MDB(AAS),
∴EM=DM,即点M是DE的中点.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,ΔDCE都是等边三角形,且B,C,E在同一条直线上,连接BD与AC交于点M,连接AE与CD交于点N,BD与AE交于点O.给出下列五个结论:①CD∥AB;②BD=AE;③CM=CN;④AO=OE;⑤∠AOD=120°.则其中正确结论有( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.
(1)如图1,若∠AOB=∠COD=40°:
①AC与BD的数量关系为 ;
②∠AMB的度数为 ;
(2)如图2,若∠AOB=∠COD=90°:
①判断AC与BD之间存在怎样的数量关系?并说明理由;
②求∠AMB的度数;
(3)在(2)的条件下,当∠CAB=30°,且点C与点M重合时,请直接写出OD与OA之间存在的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,平分交于点,在上截取,过点作交于点.求证:四边形是菱形;
如图,中,平分的外角交的延长线于点,在的延长线上截取,过点作交的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形的面积为,对角线,交于点,点,,,分别是,,,的中点,连接,,,得到菱形;点,,,分别是,,,的中点,连接,,,,得到菱形;…,依此类推,则菱形的面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com