【题目】如图,在矩形中,于,,,则的面积是( )
A.
B.
C.
D.
【答案】C
【解析】
过点C作CF⊥BD于F,根据矩形的性质可得AE=CF,利用勾股定理列式求出BD,然后利用△ABD的面积列式求出AE,再根据勾股定理求出DE,然后利用三角形的面积列式计算即可得解.
过点C作CF⊥BD于F.
∵AE⊥BD,∴∠AEB=∠CFD=90°.
∵ABCD是矩形,∴AB=CD,AB∥DC,∴∠ABD=∠CDF,∴△ABE≌△CDF,∴AE=CF,在矩形ABCD中,AD=BC=3,∠BAD=90°,由勾股定理得:BD===2.
∵AE⊥BD,∴S△ABD=×2AE=×3×,解得:AE=.在Rt△AED中,由勾股定理得:DE==,所以,△DEC的面积=××=.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度数;
(2)求证:直线AD是线段CE的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A(m,n+1),B(m+2,n).
(1)当m=1,n=2时.如图1,连接AB、AO、BO.直接写出△ABO的面积为 .
(2)如图2,若点A在第二象限、点B在第一象限,连接AB、AO、BO,AB交y轴于H,△ABO的面积为2.求点H的坐标.
(3)若点A、B在第一象限,在y 轴正半轴上存在点C,使得∠CAB=900,且CA=AB,求m的值,及OC的长(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.
(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?
(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF。
(1)求证:△ADE≌△BFE;
(2)如果FM=CM,求证:EM垂直平分DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成任务。
筝形的定义:两组邻边分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作为图形的判定方法.也就是说,如图,若四边形ABCD是一个筝形,则AB=AD,BC=CD;若AB=AD,BC=CD,则四边形ABCD是筝形.
如图,四边形ABCD是一个筝形,其中AB=AD,BC=CD.对角线AC,BD相交于点O,过点0作0M⊥AB,ON⊥AD,垂足分别为M,N.求证:四边形AMON是筝形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com