精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度数;

(2)求证:直线AD是线段CE的垂直平分线.

【答案】(1)65°(2)证明见解析

【解析】

(1)由题意可得∠EAD=BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;

(2)由于DEAB,易得∠AED=90°=ACB,而AD平分∠BAC,易知∠DAE=DAC,又因为AD=AD,利用AAS可证AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.

(1)AD平分∠BAC,BAC=50°,

∴∠EAD=BAC=25°,

DEAB,

∴∠AED=90°,

∴∠ADE=90°-EAD=90°-25°=65°;

(2)DEAB,

∴∠AED=90°=ACB,

AD平分∠BAC,

∴∠DAE=DAC,

又∵AD=AD,

∴△AED≌△ACD,

AE=AC,DE=DC

∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,

∴直线AD是线段CE的垂直平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学现有在校学生2150人,为了解该校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;

(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=90°,AD⊥BC,垂足为点 D.下列说法中:①∠B的余角只有∠BAD;②∠B=∠C;③线段 AB 的长度表示点 B 到直线 AC 的距离;④AB·AC=BC·AD;一定正确的有( )

A. 1 个 B. 2 个 C. 3 个 D. 4 个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.从下列四个条件:①BC=B′C,②AC=A′C,③A′CA=B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是以原点为圆心,2 为半径的圆,点P是直线上y=﹣x+8的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为(
A.4
B.2
C.8﹣2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点AAEABAE=BM,连接EC,再过点AANEC,交直线CM、CB于点F、N.

(1)如图1,若点M在线段AB边上时,求∠AFM的度数;

(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)(﹣2xy223x2y÷(﹣x3y4

(2)(2x+y)(2x﹣3)﹣2yx﹣1)

(3)3(m+1)2﹣5(m+1)(m﹣1)+2(m﹣1)2

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.

(1)求甲、乙两种树苗每棵的价格各是多少元?

(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】看图填空:

(1)1和∠3是直线________被直线____所截得的______

(2)1和∠4是直线_________被直线____所截得的______

(3)B和∠2是直线_________被直线_____所截得的______

(4)B和∠4是直线_________被直线_____所截得的_______

查看答案和解析>>

同步练习册答案