精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是以原点为圆心,2 为半径的圆,点P是直线上y=﹣x+8的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为(
A.4
B.2
C.8﹣2
D.2

【答案】B
【解析】解:∵P在直线y=﹣x+8上, ∴设P坐标为(m,8﹣m),
连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,
在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2
∴PQ2=m2+(8﹣m)2﹣12=2m2﹣16m+52=2(m﹣4)2+20,
则当m=4时,切线长PQ的最小值为2
故选:B.

【考点精析】认真审题,首先需要了解一次函数的性质(一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小),还要掌握切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CDCE分别是斜边AB上的高与中线,则下列结论:①BE=BC;②∠DCB=∠A;③∠DCB=∠ACE;④,其中正确的结论是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为(
A.121
B.362
C.364
D.729

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.

(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度数;

(2)求证:直线AD是线段CE的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,B=90°,AB=8cm,BC=6cm,点P从点A开始沿ABC的边做逆时针运动,且速度为每秒1cm;点Q从点B开始沿ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间为t秒.

(1)出发2秒后,P,Q两点间的距离为多少cm?

(2)在运动过程中,PQB能形成等腰三角形吗?若能,请求出几秒后第一次形成等腰三角形;若不能,则说明理由.

(3)出发几秒后,线段PQ第一次把ABC的周长分成相等两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从永福超市出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回永福超市.

(1)以永福超市为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.

(2)小明家与小刚家相距多远?

(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若两条平行线EFMN与直线ABCD相交,则图中共有同旁内角的对数为( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

同步练习册答案