精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(
A.1
B.
C.
D.

【答案】D
【解析】解:连接BD,
∵四边形ABCD是菱形,
∴AB=AD,∠ADB= ∠ADC=60°,
∴△ABD是等边三角形,
∴AD=BD,
又∵△DEF是等边三角形,
∴∠EDF=∠DEF=60°,
又∵∠ADB=60°,
∴∠ADE=∠BDF,
∴△ADE和△BDF中,
∴△ADE≌△BDF,
∴AE=BF,
∵AE=t,CF=2t,
∴BF=BC﹣CF=4﹣2t,
∴t=4﹣2t
∴t=
故选D.

延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点O是对角线AC的中点,点MBC上一点,连接AM,且AB=AM,点EBM中点,AFAB,连接EF,延长FOAB于点N.

(1)若BM=4,MC=3,AC=,求AM的长度;

(2)若∠ACB=45°,求证:AN+AF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明过程:

如图,∠1=∠2,AC平分∠DAB.

求证:DC∥AB.

证明:因为AC平分∠DAB(已知),

所以∠1=∠3(_____________ ).

又因为∠1=∠2(____________),

所以∠2=∠3(______________),

所以DC∥AB(________________).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上 A点表示的数是 a ,B 点表示的数是b ,且 ab满足|a 8|b-220.动线段 CD=4(点 D 在点 C 的右侧),从点 C与点 A重合的位置出发,以每秒 2 个单位的速度向右运动,运动时间为 t秒.

(1)求a,b的值, 运动过程中,点 D 表示的数是多少,(用含有 t 的代数式表示)

(2)在 B、C、D 三个点中,其中一个点是另外两个点为端点的线段的中点,求 t 的值;

(3)当线段 CD 在线段 AB上(不含端点重合)时,如图,图中所有线段的和记作为 S, 则 S的值是否随时间 t 的变化而变化?若变化,请说明理由;若不变,请求出 S值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是以原点为圆心,2 为半径的圆,点P是直线上y=﹣x+8的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为(
A.4
B.2
C.8﹣2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列解答过程:如图甲,ABCD,探索∠P与∠A,∠C之间的关系.

解:过点PPEAB.

ABCD

PEABCD(平行于同一条直线的两条直线互相平行)

∴∠1+∠A180°(两直线平行,同旁内角互补)

2+∠C180°(两直线平行,同旁内角互补)

∴∠1+∠A+∠2+∠C360°.

又∵∠APC=∠1+∠2

∴∠APC+∠A+∠C360°.

如图乙和图丙,ABCD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学老师布置了一道思考题“计算:(-)÷()”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.

小明的解法:原式的倒数为()÷()=()×(-12)=-4+10=6,所以(-)÷()=

(1)请你判断小明的解答是否正确,并说明理由.

(2)请你运用小明的解法解答下面的问题.

计算:(-)÷(+).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为,且轴交于点,直线经过点,直线交于点

1求点的坐标;

2求直线的解析表达式;

3的面积。

查看答案和解析>>

同步练习册答案