【题目】如图,在△ABC中,AB=BC,∠CAB=30°,AC=8,半径为2的⊙O从点A开始(如图1)沿直线AB向右滚动,滚动时始终与直线AB相切(切点为D),当⊙O与△ABC只有一个公共点时滚动停止,作OG⊥AC于点G.
(1)图1中,⊙O在AC边上截得的弦长AE=;
(2)当圆心落在AC上时,如图2,判断BC与⊙O的位置关系,并说明理由.
(3)在⊙O滚动过程中,线段OG的长度随之变化,设AD=x,OG=y,求出y与x的函数关系式,并直接写出x的取值范围.
【答案】
(1)2
(2)解:BC与⊙O相切,
理由:如图2,过点O作OH⊥BC于H,连接OD,
∵⊙O与AB相切于D,
∴OD⊥AB,
在Rt△AOD中,∠A=30°,
∴OA=2OD=4,
∵AC=8,
∴OC=4,
在△ABC中,AB=AC,
∴∠C=∠BAC=30°,
在Rt△OHC中,∠C=30°,
∴OH= OC=2=OD,
∴BC与⊙O相切,
(3)解:①当点O在AC的左侧时,
连接OD交AC于F,如备用图1,
∵⊙O与AB相切于D,
∴OD⊥AB,
∵OG⊥AC,
∴∠FOG=∠BAC=30°,
在Rt△FDA中,tan∠BAC= ,
∴FD=ADtan∠BAC= x,
∴OF=2﹣ x,
在Rt△FOG中,y=OG=OFcos∠FOG=(2﹣ x)× =﹣ x+ ,
x的取值范围为0≤x≤2 ;
②当点O在AC的右侧时,
连接DO并延长交AC于F,如备用图2,
同①的方法得,FD= x,
∴OF= x﹣2,
∵FD⊥AB,
∴∠BAC+∠AFD=90°,
∴∠FOG=∠BAC=30°,
在Rt△FOG中,y=OG=OFcos∠FOG=( x﹣2)× = x﹣ ,
x的取值范围为2 ≤x≤ .
【解析】解:(1)∵⊙O与直线AB相切于点D,
∴∠ODB=90°,
当点D与点A重合时,
连接OA,OE,
∴OA=OE,
∵∠BAC=30°,
∴∠OAC=60°,
∴△OAE是等边三角形,
∴AE=OA=2,
所以答案是2;
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.
(1)求∠DFG的度数;
(2)设∠BAD=θ,
①当θ为何值时,△DFG为等腰三角形;
②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.
(1)直接写出点B的坐标,AO和BC位置关系是;
(2)当P、Q分别是线段AO,OC上时,连接PB,QB,使,求出点P的坐标;
(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图8中图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向
右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.
(1)试说明:AB∥CD;
(2)试探究∠2与∠3的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )
A.12
B.15
C.16
D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张长方形纸先左右对折,再上下对折(记为对折2次),然后再折叠着的角上剪去一刀,将纸展开后,纸的中间就剪出了一个洞如图所示,把一张纸“先左右,再上下”的顺序对折4次后,再在折叠着的角上剪一刀,将这张纸展开,请动手操做一下,纸上会出现__________个洞.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com