精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,点Aa0),Bcc),C0c),且满足P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.

1)直接写出点B的坐标,AOBC位置关系是;

2)当PQ分别是线段AOOC上时,连接PBQB,使,求出点P的坐标;

3)在PQ的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.

【答案】(1)-4-4 ,BCAO;(2P40;3)∠PQB =OPQ+30°或∠BQP+OPQ=150°

【解析】

1)由解出c,得到B点,易知BCAO

(2)过B点作BEAOE设时间经过t秒,AP2tOQtCQ4-t用t表示出,根据列出方程解出t即可;

(3)要分情况进行讨论,①当点Q在点C的上方时;过Q点作QHAO 如图1所示,利用平行线的性质可得到∠PQB =OPQ+30°;

②当点Q在点C的下方时;过Q点作HJAO 如图2所示,同样利用平行线的性质可得到,∠BQP+OPQ=150°

(1)得到c+4=0,得到c=-4

-4-4 ,BCAO

(2)B点作BEAOE

设时间经过t秒,则AP2tOQtCQ4-t

BE4BC4

·

解得t=2

AP2t4

P40

(3) ①当点Q在点C的上方时;过Q点作QHAO 如图一所示,

∴∠OPQ=PQH.

又∵BCAOQHAO

QHBC

∴∠HQB=BCQ=30°.

∴∠OPQ+BCQ=PQH+BQH.

∴即∠PQB =OPQ+CBQ.

即∠PQB =OPQ+30°

②当点Q在点C的下方时;过Q点作HJAO 如图二所示,

∴∠OPQ=PQJ.

又∵BCAOQHAO

QHBC

∴∠=BCQ=30°.

∴∠HQB+BQP+PQJ=180°

30°+BQP+OPQ=180°

即∠BQP+OPQ=150°

综上所述∠PQB =OPQ+30°或∠BQP+OPQ=150°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB的垂直平分线DG交于点D,DE⊥CA的延长线于点E,DF⊥CB于点F.

(1)判断△ABC的形状,并说明理由;

(2)求证:AE=BF;

(3)求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在数轴上有AB两点,所表示的数分别为,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:

运动前线段AB的长为______;运动1秒后线段AB的长为______

运动t秒后,点A,点B运动的距离分别为____________

t为何值时,点A与点B恰好重合;

在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知ABC

(1)分别画出与ABC关于x轴、y轴对称的图形A1B1C1A2B2C2

(2)写出A1B1C1A2B2C2各顶点坐标;

(3)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中.AB=ACBAC=90EAC边上的一点,延长BAD,使AD=AE,连接DE,CD.

(l)图中是否存在两个三角形全等?如果存在请写出哪两个三角形全等,并且证明;如果不存在,请说明理由;

(2)若∠CBE=30,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:

信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;

信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.

根据以上信息,原来报名参加的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲骑电瓶车,乙骑自行车从相距17km的两地相向而行.

1)甲、乙同时出发经过0.5h相遇,且甲每小时行程是乙每小时行程的3倍少6km.求乙骑自行车的速度.

2)若甲、乙骑行速度保持与(1)中的速度相同,乙先出发0.5h,甲才出发,问甲出发几小时后两人相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,∠CAB=30°,AC=8,半径为2的⊙O从点A开始(如图1)沿直线AB向右滚动,滚动时始终与直线AB相切(切点为D),当⊙O与△ABC只有一个公共点时滚动停止,作OG⊥AC于点G.
(1)图1中,⊙O在AC边上截得的弦长AE=
(2)当圆心落在AC上时,如图2,判断BC与⊙O的位置关系,并说明理由.
(3)在⊙O滚动过程中,线段OG的长度随之变化,设AD=x,OG=y,求出y与x的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.

查看答案和解析>>

同步练习册答案