精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB的垂直平分线DG交于点D,DE⊥CA的延长线于点E,DF⊥CB于点F.

(1)判断△ABC的形状,并说明理由;

(2)求证:AE=BF;

(3)求DG的长.

【答案】(1)直角三角形;(2)过程见解析;(3)5.

【解析】

(1)根据勾股定理的逆定理即可判断△ABC是直角三角形;

(2)根据中垂线、角平分线的性质来证明Rt△AED≌Rt△BFD,然后根据全等三角形的对应边相等推知AE=BF;

(3)首先根据(1)(2)得出的结论,证明△ADB是直角三角形,再利用三线合一的性质和直角三角形斜边上的中线等于斜边的一半,进而得出DG.

:(1)∵AC=6,BC=8,AB=10,

∴AC2+BC2=AB2

ABC是直角三角形

(2)证明:连接AD、BD,

∵CD是∠BCA的平分线,DE⊥AC,DF⊥BC,

∴DE=DF,

∵DGAB边的垂直平分线,

∴DA=DB,

Rt△AEDRt△BFD中,

∴Rt△AED≌Rt△BFD(HL),

∴AE=BF;

(3)(1)得∠ACB=90°

∵∠E=DFC=90°

∴∠EDF=90°

(2)知∠EDA=FDB,

∴∠ADB=90°,

∵DG⊥AB,DA=DB,

∴DG=AB=5.

故答案为:(1)直角三角形;(2)过程见解析;(3)5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上点AC对应的数分别为ac,且ac,满足|a+4|+(c12018=0,点O对应的数为0,点B对应的数为﹣3

1)求数ac的值;

2)点AB沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,几秒后,点A追上点B

3)在(2)的条件下,若运动时间为t秒,运动过程中,当AB两点到原点O的距离相等时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:

与标准质量的差值
(单位:g

5

2

0

1

3

6

袋 数

1

4

3

4

5

3

1)这批样品的平均质量比标准质量多还是少?多或少几克?

2)若每袋标准质量为450克,则抽样检测的总质量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,以坐标原点O为圆心的⊙O半径为2,将⊙O沿x轴向右平移,当⊙O恰好与直线MN相切时,平移的最小距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画出函数y=2x+4的图像,并结合图像解决下列问题:

(1)写出方程2x+4=0的解;

(2)当﹣4≤y时,求相应x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】决心试一试,请阅读下列材料:计算:

解法一:原式=

=

=

解法二:原式=

=

=

=

解法三:原式的倒数为:

=

=﹣20+3﹣5+12

=﹣10

故原式 =

上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的,在正确的解法中,你认为解法 最简捷.然后请解答下列问题,计算:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDCEAB于点F,若∠E=20°C=45°,则∠A的度数为(  )

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,BAC=100°,点D在BC边上,ABD和AFD关于直线AD对称,FAC的平分线交BC于点G,连接FG.

(1)求DFG的度数;

(2)设BAD=θ,

当θ为何值时,DFG为等腰三角形;

DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点Aa0),Bcc),C0c),且满足P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.

1)直接写出点B的坐标,AOBC位置关系是;

2)当PQ分别是线段AOOC上时,连接PBQB,使,求出点P的坐标;

3)在PQ的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案