分析 (1)过点C作直径CF,连接DF,如图1,利用圆周角定理得到∠F+∠FCD=90°,∠B=∠F,再根据切线的性质得到∠FCD+∠ACD=90°,则∠B=∠ACD,然后根据三角形外角性质可证明∠A=∠ACD,从而有DA=DC;
(2)利用垂径定理得到$\widehat{BE}$=$\widehat{CE}$,则根据圆周角定理得到∠1=∠2,利用(1)的结论得∠BDC=2∠ACD,所以∠2=∠ACD,于是根据平行线的判定可得到DE∥AC.
解答 证明:(1)过点C作直径CF,连接DF,如图1,
∵CF为直径,
∴∠CDF=90°,
∴∠F+∠FCD=90°,
∵∠B=∠F,
∴∠B+∠FCD=90°,
∵AC为切线,
∴FC⊥AC,
∴∠FCA=90°,即∠FCD+∠ACD=90°,
∴∠B=∠ACD,
∵∠BDC=2∠B,
∴∠BDC=2∠ACD,
而∠BDC=∠A+∠ACD,
∴∠A=∠ACD,
∴DA=DC;
(2)∵OE⊥BC,
∴$\widehat{BE}$=$\widehat{CE}$,
∴∠1=∠2,
∵∠BDC=2∠ACD,
∴2∠2=2∠ACD,
即∠2=∠ACD,
∴DE∥AC.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7 | B. | 8 | C. | 4+2$\sqrt{3}$ | D. | 4+$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com