【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.
【答案】(1)线段CD的长为4.8;(2)当t=秒或t=3秒时,S△CPQ:S△ABC=9:100;(3)当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
【解析】
试题分析:(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.
(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题.
(3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PC或QC=QP不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t.
解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=BCAC=ABCD.
∴CD===4.8.
∴线段CD的长为4.8;
(2)①过点P作PH⊥AC,垂足为H,如图2所示.
由题可知DP=t,CQ=t.
则CP=4.8﹣t.
∵∠ACB=∠CDB=90°,
∴∠HCP=90°﹣∠DCB=∠B.
∵PH⊥AC,
∴∠CHP=90°.
∴∠CHP=∠ACB.
∴△CHP∽△BCA.
∴=.
∴=.
∴PH=﹣t.
∴S△CPQ=CQPH=t(﹣t)=﹣t2+t;
②存在某一时刻t,使得S△CPQ:S△ABC=9:100.
∵S△ABC=×6×8=24,且S△CPQ:S△ABC=9:100,
∴(﹣t2+t):24=9:100.
整理得:5t2﹣24t+27=0.
即(5t﹣9)(t﹣3)=0.
解得:t=或t=3.
∵0≤t≤4.8,
∴当t=秒或t=3秒时,S△CPQ:S△ABC=9:100;
(3)存在
①若CQ=CP,如图1,
则t=4.8﹣t.
解得:t=2.4.…(7分)
②若PQ=PC,如图2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=QC=.
∵△CHP∽△BCA.
∴=.
∴=.
解得;t=.
③若QC=QP,
过点Q作QE⊥CP,垂足为E,如图3所示.
同理可得:t=.
综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中.矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.如果OA=3,OC=2,则经过点E的反比例函数解析式为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论正确的是( )
A. 0是正数也是有理数 B. 两数之积为正,这两数同为正
C. 几个数相乘,积的符号由负因数的个数决定 D. 互为相反数的两个数的绝对值相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是国外城市与北京的时差 (带正号的数表示同一时刻比北京时间早的时数)
城市 | 纽约 | 巴黎 | 东京 | 多伦多 |
时差(时) | ﹣13 | ﹣7 | +1 | ﹣12 |
如果现在东京时间是16:00,那么纽约时间是__.(以上均为24小时制)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=x2向左平移2个单位,再向下平移3个单位,则得到的抛物线解析式是( )
A.y=(x﹣2)2﹣3
B.y=(x﹣2)2+3
C.y=(x+2)2﹣3
D.y=(x+2)2+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列因式分解错误的是( )
A. 2ax-a=a(2x-1)B. x2-2x+1=(x-1)2
C. 4ax2-a=a(2x-1)2D. ax2+2ax-3a=a(x-1)(x+3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com