【题目】如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点,使的周长最小,求出点的坐标;
(3)在第一象限的抛物线上是否存在点,使的面积最大?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在点,使的面积最大.
【解析】
(1)将点代入抛物线的解析式求出b即可;
(2)由A、B关于对称轴对称可知,连接BC交对称轴于点,点即为所求,求出直线BC的解析式,代入x=3即可得到点的坐标;
(3)设,连接、CM、BM,根据列出函数关系式,然后利用二次函数的性质求解即可.
解:(1)∵抛物线过点,
∴,
解得:,
∴抛物线的解析式为:;
(2)由得:,
∴,
又∵抛物线对称轴为:,点A关于对称的点为,
∴连接BC交于点,点即为所求,
设直线BC解析式为:,
代入,得:,解得:,
∴直线BC解析式为:,
当时,,
∴;
(3)设,则,
连接、CM、BM,
则:,
,
,
,
,
∴当时,的面积最大,此时,
故存在点,使的面积最大.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2,AD=4,M点是BC的中点,A为圆心,AB为半径的圆交AD于点E.点P在弧BE上运动,则PM+DP的最小值为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①DE平分∠ADB;②BE=2-;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,求两盏景观灯之间的水平距离(提示:请建立平面直角坐标系后,再作答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程kx+b﹣=0的解;
(3)求△AOB的面积;
(4)观察图象,直接写出不等式kx+b﹣<0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com