精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线轴相交于两点,与轴相交于点,若已知点的坐标为.

1)求抛物线的解析式;

2)在抛物线的对称轴上找一点,使的周长最小,求出点的坐标;

3)在第一象限的抛物线上是否存在点,使的面积最大?若存在,求出点的坐标;若不存在,请说明理由.

【答案】1;(2;(3)存在点,使的面积最大.

【解析】

1)将点代入抛物线的解析式求出b即可;

2)由AB关于对称轴对称可知,连接BC交对称轴于点,点即为所求,求出直线BC的解析式,代入x=3即可得到点的坐标;

3)设,连接CMBM,根据列出函数关系式,然后利用二次函数的性质求解即可.

解:(1)∵抛物线过点

解得:

∴抛物线的解析式为:

2)由得:

又∵抛物线对称轴为:,点A关于对称的点为

∴连接BC于点,点即为所求,

设直线BC解析式为:

代入得:,解得:

∴直线BC解析式为:

时,

3)设,则

连接CMBM

则:

∴当时,的面积最大,此时

故存在点,使的面积最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2AD=4M点是BC的中点,A为圆心,AB为半径的圆交AD于点E.点P在弧BE上运动,则PM+DP的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1ACBD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGHHGAB于点E,连接DEAC于点F,连接FG,则下列结论:①DE平分∠ADB;②BE=2-;③四边形AEGF是菱形;④BC+FG=1.5.其中结论正确的序号是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点AD分别在x轴、y轴上,∠ADO30°OA2,反比例函y经过CD的中点M,那么k_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,求两盏景观灯之间的水平距离(提示:请建立平面直角坐标系后,再作答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax2﹣2x+1和y=ax+a(a是常数,且a0)在同一直角坐标系中的图象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4n),B2,﹣4)是一次函数ykx+b和反比例函数y的图象的两个交点.

1)求一次函数和反比例函数的解析式;

2)观察图象,直接写出方程kx+b0的解;

3)求△AOB的面积;

4)观察图象,直接写出不等式kx+b0的解集.

查看答案和解析>>

同步练习册答案