【题目】如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB= ,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 , 能构成等腰梯形的四个点为或或 .
【答案】
(1)证明:∵PG平分∠EPF,
∴∠DPO=∠BPO,
∵OA∥PE,
∴∠DPO=∠POA,
∴∠BPO=∠POA,
∴PA=OA
(2)解:过点O作OH⊥AB于点H,则AH=HB= AB,
∵tan∠OPB= ,∴PH=2OH,
设OH=x,则PH=2x,
由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,
∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102,
解得x1=0(不合题意,舍去),x2=8,
∴AH=6,∴AB=2AH=12
(3)P、A、O、C;A、B、D、C;P、A、O、D;P、C、O、B
【解析】(3)解:P、A、O、C;A、B、D、C或P、A、O、D或P、C、O、B. (1)由已知条件“射线PG平分∠EPF”求得∠DPO=∠BPO;然后根据平行线的性质,两直线OA∥PE,内错角∠DPO=∠POA;最后由等量代换知∠BPO=∠POA,从而根据等角对等边证明AP=AO;(2)设OH=x,则PH=2x.作辅助线OH(“过点O作OH⊥AB于点H”),根据垂径定理知AH=HB= AB;又由已知条件“tan∠OPB= ”求得PH=2OH;然后利用(1)的结果及勾股定理列出关于x的一元二次方程,解方程即可;(3)根据菱形的性质、等腰梯形的判定定理填空.
科目:初中数学 来源: 题型:
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数/分 | 中位数/分 | 众数/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小李制作了一张△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
A.600m
B.500m
C.400m
D.300m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.
(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(1,3)、点B(m,1)是一次函数的图像上的两点,一次函数图像与x轴交于点D.
(1)b = ,m = ;
(2)过点B作直线l垂直于x轴,点E是点D关于直线l的对称点,点C是点A关于原点的对称点.试判断点B、E、C是否在同一条直线上,并说明理由.
(3)连结AO、BO,求△AOB的面积;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com