分析 (1)根据点B的坐标利用二次函数图象上点的坐标特征即可求出a值,再将点A的坐标代入抛物线解析式中可求出m的值,结合点A在第二象限即可确定m的值;
(2)根据两函数图象的上下位置关系即可得出:当-2<x<1时,直线在抛物线的上方,结合题意即可得出n的取值范围.
解答 解:(1)把B(1,1)代入y=ax2得:a=1,
∴抛物线解析式为y=x2.
把A(m,4)代入y=x2得:4=m2,
∴m=±2.
∵点A在二象限,
∴m=-2.
(2)观察函数图象可知:当-2<x<1时,直线在抛物线的上方,
∴n的取值范围为:-2<n<1.
点评 本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com