【题目】已知二次函数 .
(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;
(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;
(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a﹣k2+6k﹣4=0 有大于0且小于3的实数根,求a的整数值.
【答案】
(1)
证明:x2+kx+ k﹣ =0,
△1=b2﹣4ac=k2﹣4( k﹣ )
=k2﹣2k+14
=k2﹣2k+1+13
=(k﹣1)2+13>0,
∴不论k为任何实数,该函数的图象与x轴必有两个交点
(2)
解:∵二次函数y=x2+kx+ k﹣ 的图象与x轴的两个交点在点(1,0)的两侧,且二次函数开口向上,
∴当x=1时,函数值y<0,
即1+k+ k﹣ <0,
解得:k< ,
∵关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,
∴k≠0且△2=b2﹣4ac=(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9>0,
∴k>﹣ 且k≠0,
∴﹣ <k< 且k≠0,
∴k=1
(3)
解:由(2)可知:k=1,
∴x2+2(a+1)x+2a+1=0,
解得x1=﹣1,x2=﹣2a﹣1,
根据题意,0<﹣2a﹣1<3,
∴﹣2<a<﹣ ,
∴a的整数值为﹣1
【解析】(1)表示出方程:x2+kx+ k﹣ =0的判别式,即可得出结论;(2)二次函数的图象与x轴的两个交点在点A(1,0)的两侧,则可得当x=1时,函数值y<0,再由关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,可得出k的取值范围,从而得出k的整数值;(3)将求得的k的值代入,然后可求出方程的根,根据方程有大于0且小于3的实数根,可得出a的取值范围,继而得出a的整数值.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是( )
A.y=4x2+2x+1
B.y=2x2﹣4x+1
C.y=2x2﹣x+4
D.y=x2﹣4x+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了增强学生体质,推动“阳光体育”运动的广泛开展,学校准备购买一批运动鞋供学生借用,学校体育部从八年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和②,请根据相关信息,解答下列问题:
(1)图①中m的值为;
(2)本次调查获取的样本数据的众数是 , 中位数是;
(3)该校计划购买200双运动鞋,校体育部对各种鞋号运动鞋的购买数量做出如下估计:
根据样本数据分析得知:各种鞋号的运动鞋购买数量如下: |
请你分析:校体育部的估计是否合理?如果合理,请将体育部的估算过程补充完整,若不合理,请说明理由,并且给学校提一个合理化的建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在直线y=﹣3上,D、E两点在y轴上.
(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;
(2)求F点到y轴的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD中,AB=4cm,BC=6cm,动点P从点C开始,以1cm/s的速度在BC的延长线上向右匀速运动,连接AP交CD边于点E,把射线AP沿直线AD翻折,交CD的延长线于点Q,设点P的运动时间为t.
(1)若DQ=3cm,求t的值;
(2)设DQ=y,求出y与t的函数关系式;
(3)当t为何值时,△CPE与△AEQ的面积相等?
(4)在动点P运动过程中,△APQ的面积是否会发生变化?若变化,求出△APQ的面积S关于t的函数关系式;若不变,说明理由,并求出S的定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax+bx+c上部分点的横坐标x,纵坐标y的对应值如下表,从下表可知:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
下列说法错误的是( )。
A.抛物线与x轴的另一个交点为(3,0);
B.函数的最大值为6;
C.抛物线的对称轴是直线x=0.5;
D.在对称轴的左侧,y随x的增大而增大。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+ 的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com