精英家教网 > 初中数学 > 题目详情

【题目】圆的内接等腰三角形ABC,圆的半径为10,如果底边BC的长为16,那么△ABC的面积为

【答案】32或128
【解析】解:作AD⊥BC于D,
∵AB=AC,
∴BD=CD=BC=8,
∴AD垂直平分BC,
∴圆心O在AD上,连结OB,
在Rt△OBC中,∵BD=8,OB=10,
∴OD==6,
当△ABC为锐角三角形时,AD=OA+OD=10+6=16,此时S△ABC=×16×16=128;
当△ABC为钝角三角形时,AD=OA﹣OD=10﹣6=4,此时S△ABC=×16×4=32.
所以答案是:32或128.

【考点精析】根据题目的已知条件,利用三角形的外接圆与外心的相关知识可以得到问题的答案,需要掌握过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校为了奖励初三优秀毕业生计划购买一批平板电脑和一批学习机经投标购买1台平板电脑3 000购买1台学习机800.

(1)学校根据实际情况决定购买平板电脑和学习机共100要求购买的总费用不超过168 000则购买平板电脑最多多少台?

(2)(1)的条件下购买学习机的台数不超过平板电脑台数的1.7.请问有哪几种购买方案?哪种方案最省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB,按下列要求完成画图和计算:

(1)延长线段AB到点C,使BC=2AB,取AC中点D;

(2)在(1)的条件下,如果AB=4,求线段BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求ABCD的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 Rt△ABC 中,∠ABC=90°AB=BC=,将△ABC 绕点 C 逆时针旋转 60°,得到△MNC, 连接 BM,则 BM 的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李按市场价格30元/千克收购了一批海鲜1000千克存放在冷库里,据预测,海鲜的市场价格将每天每千克上涨1元.冷冻存放这批海鲜每天需要支出各种费用合计310元,而且这些海鲜在冷库中最多存放160天,同时平均每天有3千克的海鲜变质.
(1)设x天后每千克该海鲜的市场价格为y元,试写出y与x之间的函数关系式;
(2)若存放x天后,将这批海鲜一次性出售.设这批海鲜的销售总额为P元,试写出P与x之间的函数关系式;
(3)小李将这批海鲜存放多少天后出售可获得最大利润,最大利润是多少元?(利润W=销售总额﹣收购成本﹣各种费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c满足

(1)求a,b,c的值;

(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018“体彩杯”重庆开州汉丰湖半程马拉松赛开跑前一周,某校七年级数学研究学习小组在某十字路口随机调查部分市民对“半马拉松赛”的了解情况,统计结果后绘制了如图的两副不完整的统计图,请结合图中相关数据回答下列问题:

A

50<n≤60

B

60<n≤70

C

70<n≤80

D

80<n≤90

E

90<n≤100

(1)本次调查的总人数为   人,在扇形统计图中“C”所在扇形的圆心角的度数为   度;

(2)补全频数分布图;

(3)若在这一周里,该路口共有7000人通过,请估计得分超过80的大约有多少人?

查看答案和解析>>

同步练习册答案