精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象的顶点坐标为(1, ),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).

(1)求该二次函数的表达式;
(2)判断点B是否在此二次函数的图象上,并说明理由.

【答案】
(1)解:设二次函数的表达式为

∵图象过A(2,1),

,即


(2)解:过点A,B分别作AC⊥x轴,BD⊥x轴,垂足分别为C,D.

易证得△AOC≌△DOB,

∴DO=AC=1,BD=OC=2,∴B(-1,2)

当x=-1时,

∴点B在这个函数图象上


【解析】(1)根据题目中给了顶点坐标,和另一个交点坐标,用待定系数法,设顶点式,即可求得二次函数解析式。
(2)根据三角形为等腰直角三角形,利用全等的方法,得出B的坐标点,代入函数中,使函数两边相等即可得出,B在这个函数图像上。
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数图象的平移的理解,了解平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1, 在 中, .点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为 ,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在Rt△ABC中,∠C=90°.将△ABC绕点C逆时针旋转得到△A’B’C,旋转角为 ,且0°< <180°.在旋转过程中,点B’可以恰好落在AB的中点处,如图②.

(1)求∠A的度数;
(2)当点C到AA’的距离等于AC的一半时,求 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.

(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;

(2)如图2,若BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.

(1)自己画出图形并解答:A城是否受到这次台风的影响?为什么?

(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列因式分解的过程:

①x2-xy+4x-4y=(x2-xy)+(4x-4y)=x(x-y)+4(x-y)=(x-y)(x+4).

②a2-b2-c2+2bc=a2-(b2+c2-2bc)=a2-(b-c)2=(a+b-c)(a-b+c).

题分组后能直接提公因式,第题分组后能直接运用公式,仿照上述分解因式的方法,把下列各式分解因式:

(1)ad-ac-bc+bd;

(2)x2-6x+9-y2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是(  )

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.
(1)初步尝试:若点P与点A重合时(如图1),BD+BE=

(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?

(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1 , B2 , B3 , …,则B2017的坐标为( )

A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

查看答案和解析>>

同步练习册答案