精英家教网 > 初中数学 > 题目详情
2.命题“若ab=0,则a=0”是假命题(填“真”或“假”),若是假命题,请举一个反例,如a=1,b=0.

分析 利用反例a=1,b=0可判断命题为假命题.

解答 解:命题“若ab=0,则a=0”是假命题,反例为a=1,b=0.
故答案为假,a=1,b=0.

点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.
(1)求证:△GDF≌△CEF;
(2)若AB=5,BC=6,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.问题提出:求边长分别为$\sqrt{4+{a}^{2}}$,$\sqrt{1+9{a}^{2}}$,$\sqrt{9+4{a}^{2}}$(a为正整数)三角形的面积.
  问题探究:为解决上述数学问题,我们采取数形结合和转化的思想方法,并采取一般问题特殊化的策略来进行探究.
  探究一:当a=1时,求边长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$三角形的面积.
  先画一个正方形网格(每个小正方形的边长为1),再在网格中画出边长分别为$\sqrt{5}$,$\sqrt{10}$,$\sqrt{13}$的格点三角形△ABC(如图①).
  因为AB是直角边分别为2和1的Rt△ABE的斜边,所以AB=$\sqrt{5}$;
  因为BC是直角边分别为1和3的Rt△BCF的斜边,所以BC=$\sqrt{10}$;
  因为AC是直角边分别为3和2的Rt△ACG的斜边,所以AC=$\sqrt{13}$;通过面积转化,可间接求三角形△ABC的面积.
  所以,S△ABC=S正方形EFCG-S△ABE-S△BCF-S△ACG

(1)直接写出图①中S△ABC=3.5.
  探究二:当a=2时,求边长分别为2$\sqrt{2}$,$\sqrt{37}$,5三角形的面积.
  先画一个长方形网格(每个小长方形的长为2,宽为1),再在网格中画出边长分别为2$\sqrt{2}$,$\sqrt{37}$,5的格点三角形△ABC(如图②).
  因为AB是直角边分别为2和2的Rt△ABE的斜边,所以AB=2$\sqrt{2}$;
  因为BC是直角边分别为1和6的Rt△BCF的斜边,所以BC=$\sqrt{37}$;
  因为AC是直角边分别为3和4的Rt△ACG的斜边,所以AC=5,通过面积转化,可间接求三角形△ABC的面积.
  所以,S△ABC=S正方形EFCG-S△ABE-S△BCF-S△ACG
(2)直接写出图②中S△ABC=7.
  探究三:当a=3时,求边长分别为$\sqrt{13}$,$\sqrt{82}$,3$\sqrt{5}$三角形的面积.

  仿照上述方法解答下列问题:
(3)画的长方形网格中,每个小长方形的长应是2.
(4)边长分别为$\sqrt{13}$,$\sqrt{82}$,3$\sqrt{5}$的三角形的面积为$\frac{21}{2}$.
问题解决:求边长分别为$\sqrt{4+{a}^{2}}$,$\sqrt{1+9{a}^{2}}$,$\sqrt{9+4{a}^{2}}$(a为正整数)三角形的面积.
(5)类比上述方法画长方形网格,每个小长方形的长应是a.
(6)边长分别为$\sqrt{4+{a}^{2}}$,$\sqrt{1+9{a}^{2}}$,$\sqrt{9+4{a}^{2}}$(a为正整数)的三角形的面积是$\frac{7}{2}$a.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是(  )
A.3cmB.4cmC.5cmD.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.把一元二次方程x(x-3)=2化为一般形式:x2-3x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)(x+1)2-81=0
(2)x(x-2)+15=(x+3)(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.估计$\sqrt{89}$的大小应该在(  )
A.7~8之间B.8~9之间C.9~9.5之间D.9.5~10之间

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.分解因式:
(1)-a3+2a2b-ab2=-a(a-b)2
(2)xy2+2xy-15x=x(y+5)(y-3).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知△ABC的三条边长分别为3,5,7,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画(  )
A.5条B.4条C.3条D.2条

查看答案和解析>>

同步练习册答案