精英家教网 > 初中数学 > 题目详情

【题目】初二年级教师对试卷讲评课中学生参与情况进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名初中学生的参与情况,绘制了如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在扇形统计图中,项目主动质疑所在的扇形的圆心角的度数为______度;

(2)请将频数分布直方图补充完整;

(3)如果全市有6000名初三学生,那么在试卷评讲课中,独立思考的初二学生约有多少人?

【答案】(1) 54;(2)补全频数分布直方图见解析;(3)在试卷评讲课中,“独立思考”的初二学生约有1800人.

【解析】

(1)根据专注听讲的人数是224所占的比例是40%,即可求得抽查的总人数继而用360°乘以“主动质疑”的人数所占比例可得答案

(2)利用总人数减去其他各组的人数即可求得讲解题目的人数从而作出频数分布直方图

(3)利用6000乘以对应的比例即可

1)调查的总人数为224÷40%=560(人)∴项目“主动质疑”所在的扇形的圆心角的度数为360°54°.

故答案为:54;

(2)选择“讲解题目”的人数为560﹣84﹣168﹣224=84(人)补全频数分布直方图如下

(3)6000=1800(人)

在试卷评讲课中“独立思考”的初二学生约有1800

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下面一列有序数对:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)(1,5)(2,4),按这些规律,第50个有序数对是(  )

A. (3,8)B. (4,7)C. (5,6)D. (6,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料后解决问题:

小明遇到下面一个问题:

计算(2+1)(22+1)(24+1)(28+1).

经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

请你根据小明解决问题的方法,试着解决以下的问题:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感.他惊喜的发现:当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明.下面是小聪利用图1证明勾股定理的过程:

(1)将两个全等的直角三角形按图1所示摆放,其中∠DAB90°.求证:a2b2c2.

(2)请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB90°.

求证:a2b2c2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一块直角三角板放置在锐角上,使得该三角板的两条直角边恰好分别经过点

1)如图①,若时,点内,则 度,____度, 度;

2)如图②,改变直角三角板的位置,使点内,请探究之间存在怎样的数量关系,并验证你的结论;

3)如图③,改变直角三角板的位置,使点外,且在边的左侧,直接写出三者之间存在的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的10张卡片上分别写有1120十个数字,将它们背面朝上洗匀后,任意抽一张,将下列事件发生的机会的大小填在横线上.

(1)P1(抽到数字11)=_______

(2)P2(抽到两位数)=_______P3(抽到一位数)=_______

(3)P4(抽到的数大于10)_______P5(抽到的数大于16)_______P6(抽到的数小于16)_______

(4)P7(抽到的数是2的倍数)=_______P8(抽到的数是3的倍数)=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=60°,C=45°,ADBC边上的高,∠ABC的平分线BEAD于点F,则图中共有等腰三角形( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,8×5的正方形网格中,每个小正方形的边长均为1,ABC的三个顶点均在小正方形的顶点上.

(1)在图1中画ABD(D在小正方形的顶点上),使ABD的周长等于ABC的周长,且以A,B,C,D为顶点的四边形是轴对称图形;

(2)在图2中画ABE(E在小正方形的顶点上),使ABE的周长等于ABC的周长,且以A,B,C,E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.

查看答案和解析>>

同步练习册答案