精英家教网 > 初中数学 > 题目详情

【题目】如图①,E是直线ABCD内部一点,ABCD,连接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,则∠AED= °

②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.

(2)拓展应用:

如图②,射线FEl1l2交于分别交于点EFABCDabcd分别是被射线FE隔开的4个区域(不含边界,其中区域ab位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

【答案】(1)① 60;②∠AED=A+D;(2)当Pa区域时,∠PEB=PFC+EPF;当P点在b区域时,∠PFC=PEB+EPF;当P点在区域c时,∠EPF+PEB+PFC=360°;当P点在区域d时,∠EPF=PEB+PFC

【解析】试题分析:(1)①根据平行线的性质求出角的度数即可;②本题的方法一,利用平行线的性质和外角的性质即可得出结论;方法二利用平行线的性质得出即可;(2)本题分四种情况讨论,画出图形,利用平行线的性质和三角形外角性质得出结论即可.

试题解析:

(1)① ∠AED=60°

②∠AED=A+D

证明:方法一、延长DEABF,如图1,

ABCD

∴∠DFA=D

∴∠AED=A+DFA

方法二、过EEFAB,如图2,

ABCD

ABEFCD

∴∠A=AEF,∠D=DEF

∴∠AED=AEF+DEF=A+D

(2)任意写一个。

Pa区域时,如图3,∠PEB=PFC+EPF

P点在b区域时,如图4,∠PFC=PEB+EPF

P点在区域c时,如图5,∠EPF+PEB+PFC=360°

P点在区域d时,如图6,∠EPF=PEB+PFC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.

求证:(1)ABE≌△CDF;(2)BEDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.

(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.

(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,AB坐标为(60)(06)P为线段AB上的一点

(1) 如图1,若SAOP12,求P的坐标

(2) 如图2,若PAB的中点,点MN分别是OAOB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1 cm/s,则在MN运动的过程中,线段PMPN之间有何关系?并证明

(3) 如图3,若P为线段AB上异于AB的任意一点,过B点作BDOP,交OPOA分别与FD两点,EOA上一点,且∠PEABDO,试判断线段ODAE的数量关系,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为 的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市规划中某地段地铁线路要穿越护城河PQ,站点A和站点B在河的两侧,要测算出A、B间的距离.工程人员在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q出,测得A位于北偏东49°方向,B位于南偏西41°方向.根据以上数据,求A、B间的距离.(参考数据:cos41°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.
(1)求证:△BDO≌△EDC.
(2)若OB=6,则四边形OBCE的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0),B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式;
(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案