精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=数学公式,直作业宝线y=数学公式经过点C,交y轴于点G.
(1)点C、D的坐标分别是C______,D______;
(2)求顶点在直线y=数学公式上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=数学公式平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.

解:(1)令y=2,2=x-2,解得x=4,则OA=4-3=1,
∴C(4,2),D(1,2);
故答案为(4,2);(1,2);

(2)由二次函数对称性得,顶点横坐标为
令x=,则
∴顶点坐标为(),
∴设抛物线解析式为,把点代入得,
∴解析式为

(3)设顶点E在直线上运动的横坐标为m,则
∴可设解析式为
①当FG=EG时,FG=EG=2m,则,代入解析式得
得m=0(舍去),
此时所求的解析式为:
②当GE=EF时,FG=2m,则F(0,2m-2),
代入解析式得:m2+m-2=2m-2,解得m=0(舍去),m=
此时所求的解析式为:y=(x-2-
③当FG=FE时,不存在.
分析:(1)根据正方形的性质得到C点的纵坐标为2,然后代入直线y=,即可得到C(4,2),D(1,2);
(2)先求出顶点坐标为(),再利用顶点式求出抛物线的解析式;
(3)先设抛物线解析式为,然后分类讨论:①当FG=EG时,FG=EG=2m,则,代入解析式得:,求m的值;②当GE=EF时,FG=2m,则F(0,2m-2),代入解析式得:m2+m-2=2m-2,求m的值;③当FG=FE时,不存在.
点评:本题考查了抛物线的性质和它的顶点式.同时也考查了正方形的性质以及一次函数的性质和分类讨论思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案